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Stress Estimation Using Unknown Input Observer
Stefen Hui∗ Stanisław H.Żak†

Abstract— The hypothalamic-pituitary-adrenal (HPA) axis is
the body’s primary stress management system. The role of the
HPA axis is to maintain bodily functions in the presence of
physical and mental stressors. This is accomplished by controlling
the body’s cortisol level. A non-linear mathematical model of
the HPA axis from the literature is used to construct a stressor
estimator. The mathematical model of the HPA axis is in the
state-space format containing an unknown input that models
the stressor acting on the body. The controlled input variable
models external treatment. The unknown input observer (UIO)
is constructed to estimate the unknown input modeling the
stressor and its mathematical analysis is provied. Availability
of the stressor estimate can be employed in the design of effec-
tive treatment strategies for stress related diseases. Simulations
studies illustrate the effectiveness of the proposed observer-based
stressor estimator.

I. I NTRODUCTION

The hypothalamic-pituitary-adrenal (HPA) axis is a part
of the endocrine system. The endocrine system as well as
its subsystem, the HPA axis, uses hormones to communicate
between the regions of the body. The regulation of hormones
maintains homeostasis—the process by which bodily functions
are maintained at a constant level. This leads to a definition
of stress as a state of disharmony in which the homeostasis of
the organism is threatened.

Another approach to define stress was proposed by
McEwen [1] in 2002. To define stress McEwen introduced a
notion of allostasis—the process by which the body functions
change in response to surrounding stimuli. The term allostasis
is the opposite to the notion of homeostasis. An example of al-
lostais is the fight-or-flight response in which the sympathetic
nervous system as well as the HPA axis are involved.

Irrespective of how we define stress, in order to be able
to devise effective treatment strategies preventing the adverse
effects of stress, it is desirable to have a means of measuring
stress. One way to get closer to this goal is through the
mathematical modeling of subsystems of the endocrine system
that are linked to stress. In the past, the term stress was used to
denote both the causes and effects of the pressures. Recently
the term stressor has been used for the stimulus that provokes
a stress response.

A number of mathematical models of the HPA axis were
proposed in the last six decades. For an overview of the HPA
axis modeling, see [2]. In this paper, we utilize the HPA
model proposed by Ben-Zvi et al. [3], which can be viewed
as a dynamical system with unknown input. Using this model,
we construct a stressor estimator applying the theory of the
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unknown input observer (UIO). (For a recent development
of the UIO theory, the reader may wish to consult [4].)
Specifically, using only information about applied treatment
and one of the hormone measurements, the proposed observer
calculates concentrations of the three other hormones involved
and estimates the stressor affecting the individual.

In the next section we discuss the HPA model used in this
paper.

II. T HE HPA MODEL

The HPA model used by us in this paper was proposed
by Gupta et al. [5] and modified by Ben-Zvi et al. [3]. A
simplified schematic diagram of the HPA is shown in Figure 1.

Fig. 1. A simplified schematic diagram of the HPA axis.

The HPA axis is responsible for a rapid response to stress
stimuli. An activation of the hypothalamus by a stressor causes
the release of the corticotropin releasing hormone (CRH). The
hypothalamus is the control center of most of the body’s
hormonal systems. Upon reaching the pituitary gland, the
CRH hormone induces the release of the adrenocorticotropic
hormone (ACTH) by the pituitary into the circulation that
reaches the adrenal glands that are located on top of the
kidneys. The ACTH stimulates the secretion of cortisol by the
adrenals. The release of cortisol initiates metabolic effects to
fight the harmful effects of stress through negative feedback to
the hypothalamus and pituitary—see Figure 1. Once the state
of stress subsides, the concentration of ACTH and cortisol
decreases.

The variables used in the HPA axis modeling are described
in Table I.
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TABLE I

DESCRIPTION OF VARIABLES IN THEHPA MODEL.

Variable Description
x1 CRH concentration
x2 ACTH concentration
x3 Free GR concentration
x4 Cortisol concentration
d Unknown input modeling

stress action
u Control variable modeling

treatment action

TABLE II

PARAMETER VALUES IN THE HPA MODEL

. Parameter Description Value
ki1 Inhibition constant for CRH synthesis 0.100
kcd CRH degradation constant 1.000
ki2 Inhibition constant for ACTH synthesis 0.100
kad ACTH degradation constant 10.000
kcr GR synthesis constant 0.050
krd GR degradation constant 0.900
k Inhibition constant for GR synthesis 0.001

This model has the form,
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(1)
The parameter values we use are the same as in Ben-Zvi et

al. [3] and are given in Table II.
Following the approach of Ben-Zvi et al. [3], we can obtain

steady-state values of the state variables as a function of the
external stressor,d. In Figure 2, we show plots of the steady-
state values ofx1 and x3 versusd. In Figure 3, we show
plots of the steady-state values ofx2 and x4 versusd. Note
that in a chronically stressed individual, cortisol concentration,
x4, is very low. Thus a healthy individual subjected to a
prolonged extreme stress,d > 0.168, would settle down in
a stable equilibrium state corresponding to depressed cortisol
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Fig. 2. Plots of the steady-state values ofx1 andx3 versusd.
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Fig. 3. Plots of the steady-state values ofx2 andx4 versusd.

concentration,x4, corresponding to the lower branch of the
curve in Figure 3. When the stress subsides, that is,d = 0, the
individual will stay in the new equilibrium state corresponding
to a depressed cortisol concentration. This is because the
equilibrium corresponding tod = 0 is asymptotically stable
and so states “close” to it will be attracted by this asymptot-
ically stable low cortisol equilibrium. Effective treatment can
be accomplished when the states as well as stress levels are
available. In the following section, we propose a method to
estimate state variables as well as the stress level.

III. C ONSTRUCTION OF THE STATE AND STRESS

ESTIMATOR

We use the unknown input observer (UIO) theory to con-
struct a state and stress estimator. The first observer was
proposed by Luenberger in the early nineteen sixties [6], [7],
[8] for the purpose of estimating the state of a dynamical
system, referred to as a plant, based on limited measurements
of that system. More specifically, an observer is a deterministic
dynamical system that can generate an estimate of the plant’s
state using that plant’s input and output signals.

Generalizations of the Luenberger’s observer to plants
with unknown inputs resulted in several unknown input ob-
server (UIO) architectures [9], [10], [11], [12], [13], [14], [15],
[16], [17], [18], [19], [20], [21], [4].

To proceed, we represent the HPA model given by (1) in a
compact format as

ẋ = f(x) + b1u + b2(x)d. (2)

We view the above model as the patient’s model. We assume
that we can measure the ACTH concentration, that is,x2.
Therefore our output is

y = x2 =
[

0 1 0 0
]

x

= cx.

Let

ey = y − ŷ = cx − cx̂.
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Consider the following dynamical system,

˙̂x = f(x̂) + b1u + b2(x̂)E(ey), (3)

wherex̂ is the state estimate and the termE(ey), called the
injection term, is to be determined.

Definition 1: Dynamical system (3) is an observer of sys-
tem (2) if

lim
t→∞

x̂(t) = x(t)

for a set of initial conditionsx(0) and x̂(0).
Let

e = x − x̂

denote the state observation error. Then the dynamics of the
observation error are governed by the following differential
equation,

ė = f(x) − f(x̂) + b2(x)d − b2(x̂)E

= f(e + x̂) − f(x̂) + b2(e + x̂)d − b2(x̂)E

= h(e). (4)

System (3) is an unknown input observer for system (2) if the
above error system has an asymptotically stable equilibrium
state ate = 0.

To proceed, we analyze the patient’s model dynamics given
by (2). We assume thatu = 0. Then, for an operating constant
value of the stress level, we select a stable equilibrium state
xeq. We then perform Taylor’s linearization of (2) about the
equilibrium point

(xeq, ueq = 0, deq). (5)

We obtain

d

dt
(x − xeq) = f(x) + b1u + b2(x)d

≈ A(x − xeq) + b1u

+b2(xeq)(d − deq), (6)

where A is the Jacobian matrix of(f(x) + b2(x)d) with
respect tox evaluated at the equilibrium point (5). Note that
b2(xeq) is the Jacobian matrix of(f(x)+b2(x)d) with respect
to the inputd evaluated at the equilibrium point (5). We next
perform Taylor’s linearization of the observer dynamics (3) to
obtain,

d

dt
(x̂−xeq) = A(x̂−xeq)+b1u+b2(xeq)(E(ey)−deq), (7)

The dynamics of the linearized observation error are,

ė = A(x − xeq) + b2(xeq)(d − deq)

−(A(x̂ − xeq) + b2(xeq)(E − deq))

= Ae + b2(xeq)(d − E(ey)). (8)

Suppose now thatd(0) − E(0) = 0 and that

|d − E| ≤ µ‖e‖ (9)

for someµ ≥ 0. The matrixA was assumed to be asymp-
totically stable. Hence, by the Lyapunov’s theorem, see, for
example [22, p. 155], for any real positive definite matrix

Q = Q⊤ > 0 the solutionP = P⊤ to the Lyapunov matrix
equation,A⊤P + PA = −2Q, is positive definite. We take

V =
1

2
e⊤Pe

as the Lypaunov function candidate for system (8) and evaluate
its Lyapunov derivative on the trajectories of (8) to obtain

V̇ = e⊤P ė

= e⊤P (Ae + b2(xeq)(d − E))

=
1

2
e⊤

(

A⊤P + PA
)

e + e⊤Pb2(xeq)(d − E)

≤ −e⊤Qe + ‖Pb2‖‖e‖|d − E|.

Taking into account (9) gives

V̇ ≤ −λmin(Q)‖e‖2 + µ‖Pb2‖‖e‖
2

= − (λmin(Q) − µ‖Pb2‖) ‖e‖
2,

whereλmin(Q) is the minimal eigenvalue ofQ. For V̇ to be
negative-definite it is sufficient that

µ <
λmin(Q)

‖Pb2‖
. (10)

If µ satisfies the above constraint, thene = 0 is a globally
asymptotically stable equilibrium state of the observation error
system (8).

IV. STRESS ESTIMATOR ANALYSIS

A. Switching Injection Term

In this section, we discuss the estimation of the unknown
input using a switching injection term. We have shown that, in
the steady-state, the errore → 0, and because of the switching
nature of the injection termE that we will use,e = 0 only at
isolated points in time. Thereforėe is zeros only at isolated
points in time. We next show thatd can be estimated by
lowpass filteringE.

Let φ be a smooth (infinitely differentiable) non-negative
function defined on the real line such thatφ(t) = 0 for |t| > a

and that
∫ ∞

−∞

φ(τ) dτ = 1.

Let

M =

∫ ∞

−∞

|φ̇(τ)| dτ

Sinceφ is smooth,M is finite and is determined by the choice
of φ, which can be considered as a design parameter. For each
ǫ > 0, let

φǫ(t) =
1

ǫ
φ

(

t

ǫ

)

.

It is easy to see thatφǫ andφ̇ǫ are only nonzero on the interval
[−ǫa, ǫa]. As ǫ → 0, the length of the support interval forφǫ

andφ̇ǫ also tend to zero. A straightforward computation shows
that

∫ ∞

−∞

φǫ(τ) dτ = 1

and
∫ ∞

−∞

|φ̇ǫ(τ)| dτ =
M

ǫ
.
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Since the solution of Equation (8) is absolutely continuous(see
for example Equation (85) and Theorem 8 of Filipov [23]), we
can apply integration by parts to obtain from Equation (8) that,
for any t,

∫ ∞

−∞

φǫ(t − τ)ė(τ) dτ =

∫ ∞

−∞

φ̇ǫ(t − τ)e(τ) dτ

It follows from Equation (8) that

b2(xeq)

∫ ∞

−∞

φǫ(t − τ)(d(τ) − E(τ)) dτ

=

∫ ∞

−∞

φ̇ǫ(t − τ)e(τ) dτ + A

∫ ∞

−∞

φǫ(t − τ)e(τ) dτ.

Becauseb2(xeq) has a full column rank, its left inverse is
the same as its pseudoinverseb

†
2. We premultiply the above

equation byb†
2 to obtain

∫ ∞

−∞

φǫ(t − τ)d(τ) dτ −

∫ ∞

−∞

φǫ(t − τ)E(τ) dτ

= b
†
2

∫ ∞

−∞

φ̇ǫ(t − τ)e(τ) dτ + b
†
2A

∫ ∞

−∞

φǫ(t − τ)e(τ) dτ.

We have
w

w

w

w

∫ ∞

−∞

φ̇ǫ(t − τ)e(τ) dτ

w

w

w

w

≤
M

ǫ
sup

τ∈[t−ǫa,t+ǫa]

‖e(τ)‖

and
w

w

w

w

∫ ∞

−∞

φǫ(t − τ)e(τ) dτ

w

w

w

w

≤ sup
τ∈[t−ǫa,t+ǫa]

‖e(τ)‖.

For a fixedǫ, it is clear that

sup
τ∈[t−ǫa,t+ǫa]

‖e(τ)‖ → 0

and that
M

ǫ
sup

τ∈[t−ǫa,t+ǫa]

‖e(τ)‖ → 0

as t → ∞ becausee tends asymptotically to0. Note that the
rate of convergence will depend on the design parameterǫ.
We can now conclude that for larget,

∫ ∞

−∞

φǫ(t − τ)d(τ) dτ ≈

∫ ∞

−∞

φǫ(t − τ)E(τ) dτ.

One interpretation of the above is that the lowpassed outputs
of d and E are approximately equal. Ifd is slowly varying
relatively toE, then by choosing the appropriateφ andǫ, we
have

d(t) ≈

∫ ∞

−∞

φǫ(t − τ)E(τ) dτ (11)

for large t.
Our implementation ofE(ey) uses the relay element

E(ey) = ρsign(ey),

where

sign(ey) =







1 if ey > 0
0 if ey = 0
−1 if ey < 0

andρ > 0 is a design parameter. We will see in Section IV-B
that a high gain linear injection term can be used to obtain

Fig. 4. Observer-based stressor estimator analysis using linearized models
of the HPA axis and the observer.

an estimate ofd. We note here that the relay can also be
considered a high gain element because forey = 0, the slope
of the “tangent” is∞.

B. Linear Injection Term

In Section IV-A, we showed thatd can be estimated by
lowpass filtering of the output of the switching injection term.
We next show that a linear injection element can also be used.
We perform our analysis in the Laplace transform domain and,
for convenience, we use the same symbol for the functions in
both the time and transform domains.

Our stressor estimator can be represented by the block
diagram shown in Figure 4, where

Gp = c [sI4 − A]
−1

b1, Gd = c [sI4 − A]
−1

b2(xeq).

From the diagram and using the linearity ofE, we see that

d̂ = E(y − ŷ)

= E(Gpu + Gdd) − E(Gpu − Gdd̂)

= EGd(d − d̂).

Therefore,

d̂ =
EGd

1 + EGd

d. (12)

It follows from the above that ifE is large for alls in the
spectrum ofd, then

d̂ = Eey ≈ d,

which is the linear analogue of (11) in the Laplace transform
domain. One possibleE, in the Laplace transform domain, is
E(s) = k, wherek is a large positive gain. This corresponds
in the time domain to the input-output relationship

E(ey) = key,

which is simply a proportional control with a large gain.
Of course, more sophisticatedE’s can used to take into the
account the spectral properties ofd and Gd and possibly
improve the performance of the estimator.
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Fig. 5. Plots of the states versus time forE(ey) = key .

V. SIMULATION EXPERIMENTS

We present the results of two numerical experiments in-
volving two different types of stress estimators. In the first
simulation, we used a linear implementation of the element
E(ey). In the second simulation we tested a non-linear imple-
mentation of the elementE(ey) of the stressor estimator.

A. E(ey) = key

In the first simulation experiment, we usedE(ey) = key,
where we include the results of our simulations fork = 750.
We also applied a treatment strategy in the form

u =

{

0.27 for 0 < t < 10
0 for t ≥ 10.

The initial condition of the patient model was selected to be

x(0) =
[

0.1 0.01 0.1 0.01
]⊤

.

We selected zero initial conditions for the observer. The stress
profile, using the MATLAB notation can be described as

d=0.1*((t>5)&(t<12))+0.5*(t>20).

In Figure 5, we show plots of the HPA axis actual and
estimated states versus time. In Figure 6, we show a plot of the
estimated stress,̂d, versus time as well as a plot of the “actual”
stress,d, versus time. After transient decay, the observer tracks
the actual stressor with a steady-state error that depends on the
gain k.
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Fig. 6. Plots of the stressord and its estimate versus time forE(ey) = key .

B. E(ey) = ρ sign(ey)

In this simulation experiment, we implemented the element
E(ey) as E(ey) = ρ sign(ey), where ρ = 4. The initial
conditions were the same as in the previous simulation. In our
simulations we approximated the rely function with a sigmoid-



6

0 5 10 15 20 25
−4

−3

−2

−1

0

1

2

3

4

Time (hr)

Stress estimation

 

 

d
d−estimate

Fig. 7. Plots of the stressord and its estimate versus time forE(ey) =
ρ sign(ey).

like function, that is, we used the following approximation,

sign(ey) ≈
ey

|ey| + ν
,

where we usedν = 0.001. The reason for this approximation
is the the relay function is discontinuous at 0, which yields
a lot of chattering and slows down simulations. Note that as
ν → 0, the sigmoid-like function tends pointwise to the relay
function.

The plots of states versus time were very similar to those in
the previous simulation—see Figure 5. A plot of the estimated
stressor,̂d, versus time as well as a plot of the “actual” stressor,
d, versus time for the case whenE(ey) = ρ sign(ey) are
shown in Figure 7. As can be seen from this figure, the stress
estimator works even better than in the previous case.

VI. CONCLUSIONS

Stress may be responsible for symptoms as diverse as
disorders of mood and memory, skin lesions, excess acidity
that impairs digestion and absorption, inability to detoxify
systemic poisons, and neurotransmitter malfunctions among
many other symptoms [24, p. 201]. According the the Ameri-
can Institute of Stress (AIS), stress is America’s leading health
problem. Stress has been with us from the beginning of the
human race. Yet, even now in the 21-st century we do not
have one commonly accepted definition of stress. Stress is
something that we can feel. Even though stress may be a
highly subjective phenomenon, we need to find a way to
measure, or quantitatively estimate stress. In this paper,we
proposed an approach to model-based stress estimation using
the HPA axis mathematical model of Ben-Zvi et al [3].

The model used by us in this paper focuses on a single
hormone, cortisol, which is somewhat biologically limiting,
despite the fact that cortisol is a major stress hormone. Our
next step is to apply our approach, that is based on the theory
of the unknown input observers, to a more detailed model

of the HPA axis that account for the delays in the endocrine
system.
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