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Discrete Fourier Transform Based Pattern Classifiers
Stefen Hui∗ Stanisław H.Żak†

Abstract

A technique for pattern classification using the Fourier transform combined with the nearest neighbor classifier
is proposed. The multidimensional fast Fourier transform (FFT) is applied to the patterns in the data base. Then
the magnitudes of the Fourier coefficients are sorted in descending order and the firstP coefficients with largest
magnitudes are selected, whereP is a design parameter. These coefficients are then used in further processing rather
than the original patterns. When a noisy pattern is presented for classification, the pattern’sP Fourier coefficients
with largest magnitude are extracted. The coefficients are arranged in a vector in the descending order of their
magnitudes. The obtained vector is referred to as the signature vector of the corresponding pattern. Then the
distance between the signature vector of the pattern to be classified and the signature vectors of the patterns in the
data base are computed and the pattern to be classified is matched with a pattern in the data base whose signature
vector is closest to the signature vector of the pattern being classified.

Keywords: Pattern classification, Multidimensional discrete Fourier transform (DFT), Fourier coefficients.

I. INTRODUCTION

AN essential element of a quality pattern classifier is a feature extraction algorithm that is capable
of extracting features that are invariant to certain geometric transformations. In the paper, we focus

on classifying images that are transformed from original prototype images by a group of planar trans-
formations (see Section II-A). The Fourier transform possesses a number properties that make it suitable
for invariant feature extraction for pattern recognition.Altmann and Reitböck [1] and Reitboeck and
Altmann [2] proposed a size- and position-invariant description of an image function via the absolute value
of the Mellin transform of its amplitude spectrum (the absolute value of the Fourier transform.) Gardenier,
McCallum, and Bates [3] used the Fourier transform amplitudes in pattern recognition applications. More
recently, Chen, Bui, and Krzyżak [4] employed the Radon transform and dual-tree complex wavelets, in
addition to Fourier transforms, in the invariant pattern recognition.

The method we are proposing uses the amplitude spectra of theimages. It is not immediately clear
that the amplitude spectrum can uniquely determine the image. In other words, different functions may
have the same amplitude spectrum. However, it is well known that functions that arise in practice are
uniquely determined by their amplitude spectra, see Barakat and Newsam [5], and Van Hove, Lim,
and Oppenheim [6], and Taylor [7]. The study of the determination of a function, either continuous
or discrete, from its amplitude spectrum has a long history,see for example, Akutowicz [8], [9], Barakat
and Newsam [5], and Van Hove, Lim, and Oppenheim [6]. Many of the studies also discuss the possible
recovery of the function from its amplitude spectrum, see for example, Hayes, Lim, and Oppenheim [10],
Hayes [11], Taylor [7], and Bates and McDonnell [12].

The feature of each image that we use in our method is the decreasing rearrangement of the amplitude
spectrum of the image. There is no reason to believe that the decreasing rearrangement of the amplitude
spectrum of an image can uniquely determine the image itself. However, it is our experience that the
decreasing rearrangement of the amplitude spectrum does determine the image in all cases we have
studied.

We propose an algorithm whereP Fourier coefficients with largest absolute values are extracted. The
magnitudes of coefficients are arranged in a vector in descending order. We refer to the obtained vector
as the signature vector of the corresponding pattern. The distance between the signature vector of the
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pattern to be classified and the signature vectors of the patterns in the data base are computed and the
pattern to be classified is matched with a pattern in the data base whose signature vector is closest to the
signature vector of the pattern being classified.

The paper is organized as follows. In Section II, we present relevant background results related to the
Fourier transform and its properties that we use to extract pattern features for the purpose of pattern clas-
sification. In Section III-B, we discuss the use of discrete Fourier coefficients as signature vectors in noisy
environments. In Section IV, we propose a Fourier transformbased algorithm for pattern classification. In
Section V, we present results of numerical experiments demonstrating the effectiveness of the proposed
pattern classifier. Conclusions are found in Section VI.

II. M ATHEMATICAL PRELIMINARIES

In this section, we collect the mathematical results that weuse in our discussion. First, recall that
a standard rectangular RGB image is represented by a 3D matrix x of size M1 × M2 × 3. Each of
the threeM1 × M2 submatrices contain the intensity values for red, green, and blue, respectively. We
allow the following operations on the images: rotation through90◦, 180◦, 270◦, and reflections through the
horizontal, median, the vertical median, and the two main diagonals of the image. LetΓ denote the set
of these operations. By combining the operations inΓ, a total of 28 different images can be generated
from a single image. Note that the operations inΓ only affect the first two dimensions of an image. For
γ ∈ Γ, we useγ(x) to denote the image obtained fromx using the operationγ.

Let ℓ andm1, . . . ,Mℓ be positive integers. For our applications,ℓ = 3 but we present the general case
for notational convenience. LetL ∈ Zℓ be the rectangular lattice

L = [0, . . . ,M1 − 1]× · · · × [0, . . . ,Mℓ − 1]

and letM = (M1, . . . ,Mℓ) be the vector containing the dimensions of the latticeL. Then the imagex
can be viewed as a complex-valued function onL, that is,x : L → C.

A. The Discrete Fourier Transform (DFT)

We first recall the following standard notation: Letm = (m1, . . . , mℓ) andM = (M1, . . . ,Mℓ). We
denote the coordinate-wise division ofm by M by

m

M
=

(
m1

M1
, . . . ,

mℓ

Mℓ

)
.

The discrete Fourier transform (DFT) ofx is defined by

x̂(n) =
∑

m∈L

x(m)e−2πj n·m
M (1)

for eachn ∈ L. The basic properties of the Fourier transform can be found in [13], [14], [15], [16].

e
−2πjn· m

M

We make use of the following properties of the DFT. The following theorem is well known:
Theorem 1: Let x : L → C. Then

‖x̂‖2 = |M |‖x‖2,

where|M | = M1 · · ·Mℓ.
We also need the following result on the values ofx̂. Its proof is elementary but it does not appear in the
standard Fourier analysis books and so for the convenience of the reader, we have included its proof. For
x : L → C, let

A(x) = {|x̂(n)| : n ∈ L}

denote the set of values of the amplitude spectrum ofx.
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Theorem 2: For eachx : L → C and eachγ ∈ Γ,

A(x) = A(γ(x)).

Proof: Supposex has dimensionM1 ×M2 × · · · ×Mℓ. Let τ(x) denote the vector obtained fromx
by transposing its first two coordinates. Note that for an imagex, τ(x) is the same as reflectingx through
its main diagonal. Thenτ(x) has dimensionM2 × M1 × · · · × Mℓ and is a function on the transposed
lattice

L
′ = [0, . . . ,M2 − 1]× [0, . . . ,M1 − 1]× · · · × [0, . . . ,Mℓ − 1]

= [0, . . . ,M2 − 1]× [0, . . . ,M1 − 1]× L3,

whereL3 = [0, . . . ,M3 − 1]× · · · × [0, . . . ,Mℓ − 1]. We have forn ∈ L
′ that

τ̂(x)(n) =
∑

m′∈L
′

τ(x)(m′)e
−2πj n· m

M

=
∑

m′′∈L3

M2−1∑

m′

1=0

M1−1∑

m′

2=0

τ(x)(m′
1, m

′
2,m

′′)e
−2πj

(

m′

1n1
M1

+
m′

2n2
M2

+m′′·n
′′

M

)

=
∑

m′′∈L3

M2−1∑

m′

1=0

M1−1∑

m′

2=0

x(m′
2, m

′
1,m

′′)e
−2πj

(

m′

2n2
M2

+
m′

1n1
M1

+m′′·n
′′

M

)

= x̂(n′),

wheren′ denotes the vector obtained fromn by transposing its first two coordinates. We conclude that
the DFT commutes with transposition. It follows that

A(x) = A(τ(x)).

Let φ denote the reflection of the first two coordinates through thehorizontal median. Thenφ(x) has the
same dimension asx and for0 ≤ m1 ≤ M1 − 1 and m = (m1,m2) ∈ L,

φ(x)(m1,m2) = x(M1 −m1 − 1,m2).

Factor the latticeL into L = [0, . . . ,M1 − 1]× L2 and forn ∈ L, let n = (n1,n2). Then

φ̂(x)(n) =
∑

m∈L

φ(x)(m)e
−2πjn· m

M

=
∑

m2∈L2

M1−1∑

m1=0

φ(x)(m1,m2)e
−2πj

(

m1n1
M1

+n2·
m2

M2

)

=
∑

m2∈L2

M1−1∑

m1=0

x(M1 −m1 − 1,m2)e
−2πj

(

m1n1
M1

+n2·
m2

M2

)

=
∑

m2∈L2

M1−1∑

m=0

x(m,m2)e
−2πj

(

(M1−m−1)n1
M1

+n2·
m2

M2

)

= e
−2πj

(M1−1)n1
M1

∑

m2∈L2

M1−1∑

m=0

x(m,m2)e
−2πj

(

−
mn1
M1

+n2·
m2

M2

)

= e
2πj

n1
M1

∑

m2∈L2

M1−1∑

m=0

x(m,m2)e
−2πj

(

m(M1−n1)
M1

+n2·
m2

M2

)

= e
2πj

n1
M1 x̂(M1 − n1,n2).

The next to last equality is obtained using the fact thate2πjk = 1 for all integersk. It follows that for
n = (n1,n2) ∈ L,

|φ̂(x)(n)| =

{
|x̂(0,n2)| if n1 = 0

|x̂(M1 − n1,n2)| if 1 ≤ n1 ≤ M1 − 1.
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Thus the magnitude of the DFT commutes with reflection through the horizontal median and soA(x) =
A(φ(x)). The other operations inΓ can all be expressed as combinations ofτ andφ:

1) ρ = Counter-clockwise rotation by90◦ = φ ◦ τ
2) ν = Reflection through vertical median =ρ3 ◦ φ ◦ ρ
3) Reflection through opposite diagonal =ν ◦ τ ◦ ν

It follows thatA(x) is invariant under operations inΓ.
Theorem 2 shows that the magnitude of the DFT is invariant under the operations inΓ. This property

makes the magnitude of the DFT an attractive tool in the design of recognition algorithms that are robust
against the operations inΓ. However, we cannot use the magnitude of the DFT directly as it is not
invariant under the operations inΓ; only the unordered values are. We show in Section III-B thatthere
are drawbacks to using the entire DFT in noisy environments.

B. Rearrangement of Vectors

In our algorithm, we arrange the values ofA(x) in decreasing order of magnitude. In this section, we
state and prove two simple results on rearranged vectors. The results are classical and we include their
proofs since they do not seem to be widely known outside of classical analysis.

Lemma 3: Supposea andb are real vectors of lengthN . Then the maximum of the dot products of all
possible rearrangements ofa andb is achieved when the values in each vector are arranged in decreasing
order.

Proof: Let a andb be real vectors of lengthN . If a1 = · · · = aN , then the claim is certainly true
because all rearrangements ofb will give the same dot product. We can assume without loss of generality
that a1 ≥ a2 ≥ · · · ≥ aN . and that not allak’s are the same. Lets be the maximum of the dot products.
Suppose

s = a1b
′
1 + · · ·+ aNb

′
N

for an rearrangement(b′1, . . . , b
′
N ) of (b1, . . . , bN ). Supposej < k andaj > ak. Then we must haveb′j ≥ b′k

because otherwise we have

ajb
′
k + akb

′
j − (ajb

′
j + akb

′
k) = (aj − ak)(b

′
k − b′j) > 0

and we can obtain a larger dot product by switchingb′j andb′k. The claim now follows by rearranging the
bk’s in a range where theak’s are constant in decreasing order.
The following is now immediate.

Theorem 4: Let a andb be real vectors of lengthN and leta♯ andb♯ be the rearrangements ofa and
b in decreasing order. Then

‖a♯ − b
♯‖ ≤ ‖a− b‖.

Proof: Since‖a♯‖2 = ‖a‖2, ‖b♯‖2 = ‖b‖2, anda♯ · b♯ ≥ a · b, we have

‖a♯ − b
♯‖2 = ‖a♯‖2 − a

♯ · b♯ + ‖b♯‖2

≤ ‖a‖2 − a · b+ ‖b‖2

= ‖a− b‖.

III. T HE PATTERN RECOGNITION ALGORITHM

In this section, we give the motivation for the algorithm based on the mathematical results given in
Section II and the impact of noise (see Section III-B).
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A. Motivation

Let x1, . . . , xN : L → R be the pixel values ofN distinctℓ-dimensional prototype images. The original
image for a received noiselessy that has not been rotated or reflected can be recovered exactly by solving

xest = arg min
k=1,...,N

‖y − xk‖2. (2)

However, if the image has been rotated or reflected, then thismethod does not work. One approach would
be to compare the received image to all possible images obtainable from the original set of prototype
images. While this can be done, it increases the computational load almost 30 fold, which makes this
approach less desirable.

Since the DFT is not invariant under rotation and reflection,using the DFT directly suffers the same
problem as using the original image values. However, as we proved in Theorem 2, the set of values of
the amplitude spectrum

A(x) = {|x̂(m)| : m ∈ L}

is invariant under operations inΓ. So we need to find a metric on sets that measures the difference
betweenA(x) andA(y), and then use that to measure the difference between the imagesx and y. The
method we chose is based on Theorem 4. LetA♯(x) denote the vector obtained fromA(x) by decreasing
rearrangement. From Theorem 4 and Theorem 1, we have

‖A♯(x)−A♯(y)‖ ≤ ‖x̂− ŷ‖ =
√

|M |‖x− y‖. (3)

Let
d(x, y) = ‖A♯(x)−A♯(y)‖. (4)

Then it is easy to see thatd is a semi-metric on the set of prototype images but it is not a metric on the
set of all possible images. It is not a metric because it is possible to haveA♯(x) = A♯(y) even if x 6= y,
but this rarely happens in practice for a finite set of images.

Remark 1: We can formalize the way images can be distinguished using the following equivalence
relation. We say that the imagesx andy are equivalent, denoted byx ∼ y, if A(x) = A(y). It can easily
be verified that∼ is an equivalence relation on the spaceI of images with the same number of pixels.
For each imagex, let [x] denote the equivalence class containingx. On the spaceI/∼ of equivalence
classes, let

D([x], [y]) = d(x, y), (5)

whered is the semi-metric defined in equation (4). ThenD is a metric onI/∼.
We will assume that our prototype images have distinct equivalence classes. Then forx 6= y, d(x, y) =

D([x], [y]) > 0 and sod is a metric on the set of prototype images.
For a received imagey, d(x, y) > 0 if x 6= y and the only solution of

xest = arg min
k=1,...,N

d(xk, y). (6)

is x = y, the original message. We have thus found a method for recovering noiseless images that have
been transformed by the operations inΓ.

We next discuss the case when there is noise.
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B. Noise Considerations

Let x1, . . . , xN : L → R be the pixel values ofN ℓ-dimensional prototype images. Note that standard
color images are three-dimensional. The noisy version of the k-th image has the form

yk = xk + ωk, (7)

whereωk a random variable with zero mean and finite varianceσ2 per pixel. Furthermore, we assume
that {ωk(m) : k = 1, . . . , N, m ∈ L} are independent and identically distributed (iid) random variables.
The maximum likelihood estimator for a received noisy imagey is

xest = arg min
k=1,...,N

‖y − xk‖2. (8)

However, as we had seen before, the above estimator is not robust against rotation or translation and we
chose instead to use

xest = arg min
k=1,...,N

d(xk, y), (9)

where d(x, y) = ‖A♯(x) − A♯(y)‖. If the noise is zero, then the actual image is a solution to the
above optimization problem, and would be the unique solution when d is a metric. However, as we
next demonstrate, there is drawback to this approach in a noisy environment.

Let x be a prototype image andy = x+ ω a noisy version of the image. Then-th Fourier coefficient
of y satisfies

|ŷ(n)|2 =

∣∣∣∣∣∣

∑

m∈L

(x(m) + ω(m))e
−2πj n· m

M

∣∣∣∣∣∣

2

=
∑

k,m∈L

x(m)x(k)e
−2πj (m−k)· n

M

+2 Re




∑

k,m∈L

x(m)ω(k)e
−2πj (m−k)· n

M





+
∑

k,m∈L

ω(m)ω(k)e
−2πj (m−k)· n

M

= |x̂(n)|2 + 2 Re




∑

k,m∈L

x(m)ω(k)e
−2πj (m−k)· n

M





+
∑

k,m∈L

ω(m)ω(k)e
−2πj (m−k)· n

M

The expected value of|ŷ(n)|2 is

E
[
|ŷ(n)|2

]
= |x̂(n)|2

+E



2 Re




∑

k,m∈L

x(m)ω(k)e
−2πj (m−k)· n

M





+
∑

k,m∈L

ω(m)ω(k)e
−2πj (m−k)· n

M





Sinceω(m) andω(k) are independent with mean zero and varianceσ2, we have

E
[
|ŷ(n)|2

]
= |x̂(n)|2

+
∑

k=m∈L

E

[
ω(m)ω(k)

]
e
−2πj (m−k)· n

M

= |x̂(n)|2 + |M |σ2, (10)
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Fig. 1. A plot of the magnitude squared of the Fourier coefficients in Example 1.

where |M | = M1 · · ·Mℓ is the number of pixels in the image. In light of equation (10), we see that
a particular Fourier coefficient̂x(n) is useful as a feature only if|x̂(n)|2 is significantly greater than
Mσ2. For most practical images with a moderate number of pixels,the number of Fourier coefficients
whose squared-amplitudes are greater than two or three timesMσ2 is quite small for any nontrivial noise
varianceσ2. Note this observation comports with the Riemann-Lebesguelemma, see for example [17,
p. 195]. We illustrate this crucial point with a numerical example.

Example 1: We generate a random zero-one vectorx of length 1024 where each entry has probability
0.25 of being one. We compute the Fourier coefficients ofx and plot|x̂(n)|2 as a function ofn. The three
horizontal lines are at height0.25× 1024, 0.5× 1024, and1024, respectively. The plot was generated by
the following simple Matlab script:

x=rand([1 1024])>0.75;
x_hat=fft(x);
plot(abs(x_hat.ˆ2),’r+’)
axis([0 1024 0 2 * 10ˆ3])
hold on
plot(1:1024,1024 * 0.25)
plot(1:1024,1024 * 0.5)
plot(1:1024,1024 * 1)
hold off

Note that the plot excludes the high DC component at frequency 0. This is accomplished in the above
script using the commandaxis([0 1024 0 2 * 10ˆ3]) .

The significance of equation (10) is that it implies that mostof Fourier coefficients are not useful
as features of an image in a noisy environment. In fact, the differenced(xk, y) in equation (9) may be
overwhelmed by noise. It therefore makes sense to only consider the Fourier coefficients with the largest
magnitudes. Note that using a scaled version of the DFT, for example,

x̂(n) =
1

M

∑

m∈L

x(m)e−
2πj m·n

M ,

does not alleviate the problem because all coefficients are scaled the same and so the signal-to-noise ratio
does not change.

In light of the above discussion, we use only the largest values in A♯(x). Let A♯
P (x) be the vector

containing the firstP coordinates ofA♯(x) and letdP (x, y) = ‖A♯
p(x)−A♯

P (y)‖. In all practical situations,
dP is a metric on the set of prototype images and we solve

xest = arg min
k=1,...,N

dP (xk, y) (11)

to find the most likely original image given the received image y.
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C. Error Analysis

In this section, we analyze the effect of noise on the proposed algorithm. Our main tool is Equation 3.
As in Section III-B, we assume that the noisy version of thek-th image has the form

yk = xk + ωk, (12)

whereωk a random variable with zero mean and finite varianceσ2 per pixel. We have from Equation (3)
that

d2(x, x+ ω) = ‖A♯(x)−A♯(x+ ω)‖2 ≤ ‖ω̂‖2 = |M |‖ω‖2

and it follows that the expected value of the squared error for the whole image satisfies

E
[
‖A♯(x)−A♯(x+ ω)‖2

]
≤ |M |E

[
‖ω‖2

]

= |M |
∑

m∈L

E
[
|ω(m)|2

]

= |M |
∑

m∈L

σ
2

= |M |2σ2. (13)

In the above computation, we used the fact thatσ2 = E [|ω(m)|2] is the noise variance for each pixel.
Since there are|M | pixels in each image, the expected squared error per pixel is

1

|M |
E[‖A♯(x)−A♯(x+ ω)‖2] = |M |σ2.

When compared with the un-rearranged per pixel error given in Equation (10), we can see that rearrange-
ment does not increase the per pixel mean-square error of theDFT.

We have for a fixed imagex and a noise sampleω that

‖A♯(x)− A♯(x+ ω)‖2 ≤ |M |‖ω‖2 = |M |2

(
1

|M |

∑

m∈L

|ω(m)|2

)
.

IV. PATTERN RECOGNITION ALGORITHM

The pattern recognition method we propose usesP leading elements of the decreasing rearrangements
of the magnitude of the Fourier coefficients of the images as signatures. The numberP is a design
parameter chosen on the basis of nature of the prototype images and the expected range of noise variance.
The complete algorithm can be summarized as follows:

1) Prototype Image Signature Extraction
a) Fix a design parameterP .
b) For each image given by a functionx defined on a latticeL, compute its discrete Fourier

transformx̂.
c) Evaluate and sort{|x̂(n)|: n ∈ L} in descending order.
d) Store theP highest values in a vector as the signature for the image.

2) Noisy Image Pattern Classification
a) For a noisy imagey to be classified, repeat steps 1b, 1c, and 1d described above.
b) From the stored prototype signature vectors, find the one with smallest distance from the

signature vector ofy.
Note that one can use any metric onRP as the distance function in step 2b. In our simulations, we use
the ℓ1 norm, which gives almost the same performance as theℓ2 norm.
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TABLE I
NOISE STANDARD DEVIATIONS USED IN SIMULATION.

Noise Stdσ 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.50 3.00 3.50 4.00 4.50 5.00

V. SIMULATIONS

For our simulations, we used 14 color images of stamps from [18] that contain images of butterflies.
Each image contains300 × 200 color pixels, which we treat as a function on a300 × 200 × 3 integer
lattice. The original pixel values were integers from 0 to 255, which we converted into floating point real
numbers with values between 0 and 1. We computed the three dimensional discrete Fourier transform of
each image and then sorted the magnitudes of the Fourier coefficients. We kept the top 30 magnitudes
from each image as its signature.

For the simulations, one of the 14 prototype images was randomly and uniformly selected. Gaussian
noise was added independently to each pixel to the selected image; see Figure 2 for an illustration of a
typical prototype image and its noisy version for selected noise levels. We use the standard definition of
signal-to-noise ratio (SNR) for an imagex:

SNR=

√√√√ 1

|M |σ2

∑

n∈L

[x(n)− x̄]2

whereσ2 is the variance of the noise per pixel andx̄ =
∑

n∈L x(n)/M is the average pixel value of
the imagex; see for example Chen, Bui, and Krzyzak [4]. Note that the above definition of SNR is
independent of image size and can be interpreted as the imageSNR and as the average per pixel SNR.

The noisy image was rotated randomly and uniformly by0◦, 90◦, 180◦, or 270◦; see Figure 3 for
an illustration of the rotations of a typical image. The signature vector of the noisy rotated image was
extracted and the prototype image with the closest signature vector inℓ1 norm was selected as the best
estimate. The number of errors was recorded. Note that thereare a total of 56 possible images without
noise.

We repeated the same experiment using compressed versions of the same images. Each of three color
components of an image was compressed by a two dimensional Daubechies wavelet to have size75×50.
The three compressed color components combine to form a compressed color image of size75× 50× 3;
see Figure 4 for a typical compressed image and selected noisy versions.

We chose the noise standard deviations given in Table I for our simulation. For each noise standard
deviation,12, 000 trials were conducted and the number of errors recorded. Theresults are presented in
Figures 5, 6, and 7. In Figure 5, the error rate, which is the number of errors divided by the number of
trials, of the simulation using the original prototype images is plotted against the SNR. In Figure 6, we
plot the error rate of the simulation using the compressed images. A comparison of the error rates for the
original and compressed images is given in Figure 7. In the plots, the SNR is defined using the average
signal standard deviationσ = 0.45 of all prototype images.

Remark 2: We also performed the same experiments with only rotation but no noise. The algorithm
was able to identify all presented images correctly and there were no errors. This is exactly as the theory
predicted and this also shows thatdP is indeed a metric on the set of prototype images.
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(a) Sample image (b) SNR= −0.5 dB

(c) SNR= −3.5 dB (d) SNR= −6.5 dB

Fig. 2. Original image and its noisy versions used in the numerical experiment.

(a) Sample image (b) 90
◦

(c) 180
◦ (d) 270

◦

Fig. 3. Original image and its rotated versions used in the numerical experiment.
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(a) Sample image (b) SNR= −0.5 dB

(c) SNR= −3.5 dB (d) SNR= −6.5 dB

Fig. 4. A compressed image and its noisy versions.
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Fig. 5. A plot of the error rate versus signal-to-noise ratio- original images.
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Fig. 6. Error rate versus signal-to-noise ratio - compressed images.
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Fig. 7. Error rate versus signal-to-noise ratio - comparison for the compressed images and uncompressed images.
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VI. CONCLUSIONS

We presented a Fourier transform based pattern recognitionalgorithm. The algorithm uses the mag-
nitudes of a small number of Fourier coefficients of an image as its signature vector. We presented
mathematical justifications as to why using a small number ofFourier coefficients as a signature vector
may be better than using all Fourier coefficients in the presence of noise. Simulations were conducted to
demonstrate the effectiveness of the algorithm in noisy environments.
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