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Discrete Fourier Transform Based Pattern Classifiers
Stefen Hui Stanistaw H.Zak'

Abstract

A technique for pattern classification using the Fouriengfarm combined with the nearest neighbor classifier
is proposed. The multidimensional fast Fourier transfoRRT() is applied to the patterns in the data base. Then
the magnitudes of the Fourier coefficients are sorted inedeting order and the firgdP coefficients with largest
magnitudes are selected, whérés a design parameter. These coefficients are then usedfirefyrocessing rather
than the original patterns. When a noisy pattern is predeiateclassification, the patternB Fourier coefficients
with largest magnitude are extracted. The coefficients ar@nged in a vector in the descending order of their
magnitudes. The obtained vector is referred to as the sigmatector of the corresponding pattern. Then the
distance between the signature vector of the pattern todssified and the signature vectors of the patterns in the
data base are computed and the pattern to be classified ibedatgth a pattern in the data base whose signature
vector is closest to the signature vector of the patterndgeliassified.

Keywords: Pattern classification, Multidimensional discrete Fautiansform (DFT), Fourier coefficients.

I. INTRODUCTION

N essential element of a quality pattern classifier is a feaéxtraction algorithm that is capable

of extracting features that are invariant to certain geom#étansformations. In the paper, we focus
on classifying images that are transformed from originat@iype images by a group of planar trans-
formations (see Section II-A). The Fourier transform pesses a humber properties that make it suitable
for invariant feature extraction for pattern recognitigitmann and Reitbock [1] and Reitboeck and
Altmann [2] proposed a size- and position-invariant dggin of an image function via the absolute value
of the Mellin transform of its amplitude spectrum (the albgelvalue of the Fourier transform.) Gardenier,
McCallum, and Bates [3] used the Fourier transform ampdéuth pattern recognition applications. More
recently, Chen, Bui, and Krzyzak [4] employed the Radondfarm and dual-tree complex wavelets, in
addition to Fourier transforms, in the invariant patteroognition.

The method we are proposing uses the amplitude spectra amtges. It is not immediately clear
that the amplitude spectrum can uniquely determine the émbgother words, different functions may
have the same amplitude spectrum. However, it is well kndwat functions that arise in practice are
uniquely determined by their amplitude spectra, see Barakd Newsam [5], and Van Hove, Lim,
and Oppenheim [6], and Taylor [7]. The study of the determmdmaof a function, either continuous
or discrete, from its amplitude spectrum has a long histeeg, for example, Akutowicz [8], [9], Barakat
and Newsam [5], and Van Hove, Lim, and Oppenheim [6]. Manyhef $tudies also discuss the possible
recovery of the function from its amplitude spectrum, seeefample, Hayes, Lim, and Oppenheim [10],
Hayes [11], Taylor [7], and Bates and McDonnell [12].

The feature of each image that we use in our method is the algngerearrangement of the amplitude
spectrum of the image. There is no reason to believe thatebeedsing rearrangement of the amplitude
spectrum of an image can uniquely determine the image .itslelfvever, it is our experience that the
decreasing rearrangement of the amplitude spectrum ddesnmdee the image in all cases we have
studied.

We propose an algorithm wheie Fourier coefficients with largest absolute values are etérth The
magnitudes of coefficients are arranged in a vector in delscgrorder. We refer to the obtained vector
as the signature vector of the corresponding pattern. Teardie between the signature vector of the
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pattern to be classified and the signature vectors of therpattn the data base are computed and the
pattern to be classified is matched with a pattern in the dasa lvhose signature vector is closest to the
signature vector of the pattern being classified.

The paper is organized as follows. In Section Il, we preselevant background results related to the
Fourier transform and its properties that we use to extrattem features for the purpose of pattern clas-
sification. In Section IlI-B, we discuss the use of discretarer coefficients as signature vectors in noisy
environments. In Section 1V, we propose a Fourier transfbased algorithm for pattern classification. In
Section V, we present results of numerical experiments deitnating the effectiveness of the proposed
pattern classifier. Conclusions are found in Section VI.

[I. MATHEMATICAL PRELIMINARIES

In this section, we collect the mathematical results thatuse in our discussion. First, recall that
a standard rectangular RGB image is represented by a 3Dxmatof size M; x M, x 3. Each of
the threeM; x M, submatrices contain the intensity values for red, greed, ldone, respectively. We
allow the following operations on the images: rotation tlgh90°, 180°,270°, and reflections through the
horizontal, median, the vertical median, and the two maagdnals of the image. Ldt denote the set
of these operations. By combining the operationd"jna total of 28 different images can be generated
from a single image. Note that the operationdironly affect the first two dimensions of an image. For
v € T', we usey(z) to denote the image obtained framusing the operation.

Let ¢ andm,, ..., M, be positive integers. For our applicatioss= 3 but we present the general case
for notational convenience. Ldt € Z‘ be the rectangular lattice

L=1[0,....,.M;—1] x---x[0,..., M, —1]

and letM = (M,,...,M,) be the vector containing the dimensions of the latilceThen the image:
can be viewed as a complex-valued functiononthat is,» : L — C.

A. The Discrete Fourier Transform (DFT)

We first recall the following standard notation: Let = (my,...,my) and M = (M, ..., M,). We
denote the coordinate-wise division ot by M by

m_ mq my
M— Ml,...,MZ .

The discrete Fourier transform (DFT) ofis defined by

B(n) =Y a(m)e ™t (1)

meL
for eachn € L. The basic properties of the Fourier transform can be foanld 3], [14], [15], [16].
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We make use of the following properties of the DFT. The follogvtheorem is well known:
Theorem 1. Letxz : L — C. Then
1% = | M][||1%,

where| M| = M, - - - M,.
We also need the following result on the valuesroits proof is elementary but it does not appear in the
standard Fourier analysis books and so for the convenienites seader, we have included its proof. For
z: L —C, let

A(z) ={[Z(n)| :n e L}

denote the set of values of the amplitude spectrum.of



Theorem 2: For eachr : L — C and eachy € T,

A(z) = A(y(x)).

Proof: Supposer has dimension\/; x M x --- x M,. Let 7(x) denote the vector obtained from
by transposing its first two coordinates. Note that for angeng 7(z) is the same as reflectingthrough
its main diagonal. Them(x) has dimensionVl, x M; x --- x M, and is a function on the transposed
lattice

L' = [0,..., My—1]x[0,.... My — 1] x -+ x [0,..., My — 1]
[O,...,Mg—l]x[0,...,M1—]_]XL3,

whereL3 = [0,..., M3 — 1] x --- x [0,..., M, — 1]. We have forn € L’ that

T()(n) = 3 rwmne R
m/eL’
Mg—1M71—1 ming m2"2+m~.nﬁ”>

*27‘7( +

— roo 1 M M

= E § § 7(z)(m7, my, m'")e 1 2
m/’ EL3 'm'l:O 7n'2:0

My—1M;—1

= Z Z Z x(mb,my, m’ )672‘"j<

my’ e Ly m]=0 m,=0

~ &),

’ ’
mbng  ming ”.n
iyt Ml MM

wheren’ denotes the vector obtained fromby transposing its first two coordinates. We conclude that
the DFT commutes with transposition. It follows that

A(z) = A(1(x)).

Let ¢ denote the reflection of the first two coordinates throughhtiézontal median. Then(z) has the
same dimension as and for0 < m; < M; —1 and m = (m;, my) € L,

gb(x)(ml,mg) = [E(Ml —my — ]_,mg).

Factor the latticel into L = [0,...,M; — 1] x Ly and forn € L, let n = (ny,ny). Then

¢($)(’n) = Z d’(r)(m)ei%rjn'%

melL

My—1 n
= S s mmaye R
myeL, m1=0

My—1 omi ( 1ny
j +n
= E E (M —m1 —1,m2)e My >

myeL, m1=0

M;—1 '.((Ml m—1)nj m2>
—27j | ——7—— +N2 w75~
= E E z(m, ma)e M M,

myeL, m=0

Myp—1 . mn
(1\11 1)"1 17 —2m (7 2rlan )
—2 J 2" n[
— e ™3 E E ZE m, m2 e My

moeL, m=0

_ 2mj L M;—1 72‘"](771(1&11 1) 4, ]\n}f)
= e M § § z(m, m2) 2

myeL, m=0

o 27 1
= eME(M; —ng,my).

i)

The next to last equality is obtained using the fact #¥at* = 1 for all integersk. It follows that for

n = (nl,n2) S L,
o — J 70, m0)] itny =0
|b(z)(n)] = {|§(M1_n17n2)| if 1<n <M -1



Thus the magnitude of the DFT commutes with reflection thhotige horizontal median and so(x) =
A(o(z)). The other operations ifi can all be expressed as combinations-aind ¢:

1) p = Counter-clockwise rotation b§0° = ¢po 7

2) v = Reflection through vertical median & o ¢ o p

3) Reflection through opposite diagonab= 7o v
It follows that A(z) is invariant under operations in. u

Theorem 2 shows that the magnitude of the DFT is invarianeutite operations i'. This property
makes the magnitude of the DFT an attractive tool in the aesfgecognition algorithms that are robust
against the operations ih. However, we cannot use the magnitude of the DFT directlytds not
invariant under the operations iy only the unordered values are. We show in Section IlI-B thate
are drawbacks to using the entire DFT in noisy environments.

B. Rearrangement of \ectors

In our algorithm, we arrange the values 4fz) in decreasing order of magnitude. In this section, we
state and prove two simple results on rearranged vectors.r@s$ults are classical and we include their
proofs since they do not seem to be widely known outside afsatal analysis.

Lemma 3. Supposex andb are real vectors of lengtly. Then the maximum of the dot products of all
possible rearrangements @fandb is achieved when the values in each vector are arranged reasicg
order.

Proof: Let a andb be real vectors of lengttv. If a; = --- = ay, then the claim is certainly true
because all rearrangementsboivill give the same dot product. We can assume without losseatgality
thata; > ay > -+ > ay. and that not alk,’s are the same. Let be the maximum of the dot products.
Suppose

s:alb'1+---+aNb’N

for an rearrangemertd’, . .., by) of (b1, ..., by). Supposg < k anda; > a,. Then we must havé > b,
because otherwise we have

ajb; + akb;‘ - (ajb;» + apby,) = (a; — ay,) (b, — b;) >0

and we can obtain a larger dot product by switchih@ndb; . The claim now follows by rearranging the
b,’s in a range where the,’s are constant in decreasing order. [ |
The following is now immediate.
Theorem 4: Let a andb be real vectors of lengthV and leta? andb* be the rearrangements afand
b in decreasing order. Then
la* — || < [la —b].

Proof: Since||a|? = ||a|?, ||b*|? = ||b||?>, anda’ - b* > a - b, we have

la* o> = |la*|* — a* - b° + ||bF]®
< la*-a b+|b|*
= lla—b|.

IIl. THE PATTERN RECOGNITION ALGORITHM

In this section, we give the motivation for the algorithm é@don the mathematical results given in
Section Il and the impact of noise (see Section 1lI-B).



A. Motivation

Letxy,...,zn : L — R be the pixel values oN distinct/-dimensional prototype images. The original
image for a received noiselegghat has not been rotated or reflected can be recoveredekscsolving

Test = arg, min |y — . 2)
However, if the image has been rotated or reflected, themtbtbod does not work. One approach would
be to compare the received image to all possible imagesnaitie from the original set of prototype
images. While this can be done, it increases the computdtioad almost 30 fold, which makes this
approach less desirable.

Since the DFT is not invariant under rotation and reflectissing the DFT directly suffers the same
problem as using the original image values. However, as weeprin Theorem 2, the set of values of
the amplitude spectrum

Az) = {[z(m)]: m € L}

is invariant under operations in. So we need to find a metric on sets that measures the difeerenc
betweenA(x) and A(y), and then use that to measure the difference between theesmaand y. The
method we chose is based on Theorem 4. A'dtr) denote the vector obtained fror(x) by decreasing
rearrangement. From Theorem 4 and Theorem 1, we have

|A*(z) — A¥(y)|| < |7 = gll = VIM]|||lz — y]|. 3)
Let
d(z,y) = | A¥(x) — A (y)]. 4)

Then it is easy to see thdtis a semi-metric on the set of prototype images but it is notetrimon the
set of all possible images. It is not a metric because it isiptesto haveA®(z) = Af(y) even ifz # ,
but this rarely happens in practice for a finite set of images.

Remark 1: We can formalize the way images can be distinguished usiagfdtowing equivalence
relation. We say that the imagesandy are equivalent, denoted by~ vy, if A(x) = A(y). It can easily
be verified that~ is an equivalence relation on the spacef images with the same number of pixels.
For each image:, let [z] denote the equivalence class containingOn the spac€/ ~ of equivalence
classes, let

D([z],[y]) = d(z,y), (5)

whered is the semi-metric defined in equation (4). ThBnis a metric onZ/ ~.

We will assume that our prototype images have distinct edeince classes. Then for# y, d(x,y) =
D([z],[y]) > 0 and sod is a metric on the set of prototype images.

For a received image, d(z,y) > 0 if z # y and the only solution of

Test = AIg mmin d(zy, y)- (6)
is x = y, the original message. We have thus found a method for reiogvaoiseless images that have
been transformed by the operationslin
We next discuss the case when there is noise.



B. Noise Considerations

Let z1,...,xzy : L — R be the pixel values ofV /-dimensional prototype images. Note that standard
color images are three-dimensional. The noisy version ef:tth image has the form

Yp = T + Wy, (7)

wherew, a random variable with zero mean and finite varianéeper pixel. Furthermore, we assume
that {wx(m) : k=1,..., N, m € L} are independent and identically distributed (iid) randcamiables.
The maximum likelihood estimator for a received noisy image

Test = arg min |y — o (8)
However, as we had seen before, the above estimator is na$tralyainst rotation or translation and we
chose instead to use
Tegt = AIY k:mmN d(zg,y), 9)
where d(z,y) = ||A*(x) — A¥(y)|. If the noise is zero, then the actual image is a solution ® th
above optimization problem, and would be the unique satutiend is a metric. However, as we
next demonstrate, there is drawback to this approach in sy resivironment.
Let x be a prototype image angd= = + w a noisy version of the image. Theth Fourier coefficient
of y satisfies
2
T = | 3 @m)+wmm))e ™R
melL
= ¥ smyzk)e > MR R
k- meL

2Re | S ammyuk)e ™Ry
k. meL

e L

kmeL

= @m))*+2 Re ( 3 sM)ok)e 2™ (mk).]&)

k.meL
Y wmmwkye 7 ™R R
k.meL
The expected value dfj(n)|* is
E[[gm)f] = [F(n)f

2 Re ( > x<m>w<k>e2”<m’“'%)

+ 3 wmwk)e (m—k). %}

Sincew(m) andw(k) are independent with mean zero and variantewe have

E[jn)] = [Zn)
s Y Blumyetk)| R R
k=meL
= [Z(n)]* + |M]|o?, (10)
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Fig. 1. A plot of the magnitude squared of the Fourier coedfits in Example 1.

where | M| = M, --- M, is the number of pixels in the image. In light of equation (1@ see that
a particular Fourier coefficient(n) is useful as a feature only iff(n)|* is significantly greater than
Mo?. For most practical images with a moderate number of pixtks,number of Fourier coefficients
whose squared-amplitudes are greater than two or thres fieé is quite small for any nontrivial noise
varianceo?. Note this observation comports with the Riemann-Lebedgoana, see for example [17,
p. 195]. We illustrate this crucial point with a numericalaexple.

Example 1. We generate a random zero-one vectaf length 1024 where each entry has probability
0.25 of being one. We compute the Fourier coefficients ahd plot|Z(n)|* as a function of.. The three
horizontal lines are at heiglit25 x 1024, 0.5 x 1024, and1024, respectively. The plot was generated by

the following simple Matlab script:
x=rand([1 1024])>0.75;
x_hat=fft(x);
plot(abs(x_hat."2),’r+")
axis([0 1024 0 2 *1073))
hold on
plot(1:1024,1024 *0.25)
plot(1:1024,1024  *0.5)
plot(1:1024,1024  *1)
hold off

Note that the plot excludes the high DC component at frequéncrhis is accomplished in the above
script using the commanaixis([0 1024 0 2 *1073)])

The significance of equation (10) is that it implies that mo&tFourier coefficients are not useful
as features of an image in a noisy environment. In fact, tfferdhced(z,y) in equation (9) may be
overwhelmed by noise. It therefore makes sense to only dengie Fourier coefficients with the largest
magnitudes. Note that using a scaled version of the DFT, Xamgle,

#(M) = Z Y~ T
meL
does not alleviate the problem because all coefficientsaaied the same and so the signal-to-noise ratio
does not change.

In light of the above discussion, we use only the largesteslin Aﬁ( ). Let A%(z) be the vector
containing the first” coordinates ofd*(x) and letdp(z, y) = || AL (x) — A “(v)]- In all practical situations,
dp is a metric on the set of prototype images and we solve

Test = aIg Min dp(zr,y) (11)

to find the most likely original image given the received irag



C. Error Analysis

In this section, we analyze the effect of noise on the progp@sgorithm. Our main tool is Equation 3.
As in Section IlI-B, we assume that the noisy version of thlh image has the form

Y = Tk + Wy, (12)

wherew, a random variable with zero mean and finite varianéger pixel. We have from Equation (3)
that
(z, 0 +w) = | A4(2) — Az +w)|* < [3]° = [M][|w]?

and it follows that the expected value of the squared errotife whole image satisfies
E[[| A (@) = A +w)P] < [M|E [|lw]’]

= M| ) E[lw(m)]
meL

= M| ) o

melL

= |M*0*. (13)

In the above computation, we used the fact that= E [|w(m)|?] is the noise variance for each pixel.
Since there aréM | pixels in each image, the expected squared error per pixel is

1
—E[||A*(x) — Az + )| = |[M|o>.
M| [ A*(z) — A*(z + w)|"] = [M]
When compared with the un-rearranged per pixel error giaeBguation (10), we can see that rearrange-
ment does not increase the per pixel mean-square error dFffie
We have for a fixed image and a noise sample that

|4%(2) = A+ w)|* < [IM|||w]® = [M? <ﬁ > \W(m)|2> :

melL

V. PATTERN RECOGNITION ALGORITHM

The pattern recognition method we propose uBdsading elements of the decreasing rearrangements
of the magnitude of the Fourier coefficients of the imagesigeasures. The numbeP is a design
parameter chosen on the basis of nature of the prototypeesragd the expected range of noise variance.
The complete algorithm can be summarized as follows:

1) Prototype Image Signature Extraction

a) Fix a design parametéer.
b) For each image given by a functiandefined on a latticel,, compute its discrete Fourier
transformz.
c) Evaluate and so|Z(n)|: n € L} in descending order.
d) Store theP highest values in a vector as the signature for the image.
2) Noisy Image Pattern Classification
a) For a noisy image to be classified, repeat steps 1b, 1c, and 1d described above.
b) From the stored prototype signature vectors, find the oitle smallest distance from the
signature vector of).
Note that one can use any metric BY as the distance function in step 2b. In our simulations, wee us
the ¢! norm, which gives almost the same performance ag’theorm.



TABLE |
NOISE STANDARD DEVIATIONS USED IN SIMULATION.

Noise Stde  0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.50 3.00 3.50 4.00 4.50 5.00

V. SIMULATIONS

For our simulations, we used 14 color images of stamps fro8h fdat contain images of butterflies.
Each image contain300 x 200 color pixels, which we treat as a function on3@) x 200 x 3 integer
lattice. The original pixel values were integers from 0 t&® 2&hich we converted into floating point real
numbers with values between 0 and 1. We computed the threendional discrete Fourier transform of
each image and then sorted the magnitudes of the Fourieficterfs. We kept the top 30 magnitudes
from each image as its signature.

For the simulations, one of the 14 prototype images was mahdand uniformly selected. Gaussian
noise was added independently to each pixel to the selectade; see Figure 2 for an illustration of a
typical prototype image and its noisy version for selectetse levels. We use the standard definition of
signal-to-noise ratio (SNR) for an image

1 2
SNR= i T% [z(n) — Z)

where o is the variance of the noise per pixel amd= ), r z(n)/M is the average pixel value of
the imagex; see for example Chen, Bui, and Krzyzak [4]. Note that thevabdefinition of SNR is
independent of image size and can be interpreted as the iBldBeand as the average per pixel SNR.

The noisy image was rotated randomly and uniformly 8y 90°, 180°, or 270°; see Figure 3 for
an illustration of the rotations of a typical image. The sigme vector of the noisy rotated image was
extracted and the prototype image with the closest sigeatector in¢/! norm was selected as the best
estimate. The number of errors was recorded. Note that #rerex total of 56 possible images without
noise.

We repeated the same experiment using compressed versitms same images. Each of three color
components of an image was compressed by a two dimensiondlebhies wavelet to have sizé x 50.
The three compressed color components combine to form aressgd color image of siZ& x 50 x 3;
see Figure 4 for a typical compressed image and selecteygl weisions.

We chose the noise standard deviations given in Table | forsouaulation. For each noise standard
deviation, 12, 000 trials were conducted and the number of errors recorded.r@$idts are presented in
Figures 5, 6, and 7. In Figure 5, the error rate, which is thealmer of errors divided by the number of
trials, of the simulation using the original prototype insags plotted against the SNR. In Figure 6, we
plot the error rate of the simulation using the compresseajgs. A comparison of the error rates for the
original and compressed images is given in Figure 7. In tloéspthe SNR is defined using the average
signal standard deviatiom = 0.45 of all prototype images.

Remark 2: We also performed the same experiments with only rotatiannbunoise. The algorithm
was able to identify all presented images correctly andeti@re no errors. This is exactly as the theory
predicted and this also shows that is indeed a metric on the set of prototype images.



e e e

Grenada 10¢

RED ANARTIA  Anartra amnatht

asssssnan

(@) Sample image

(c) SNR= —3.5dB

(b) SNR= —0.5dB

(d) SNR= —6.5dB

Fig. 2. Original image and its noisy versions used in the misakexperiment.

T e

Grenada 10¢

RED ANARTIA  Awartra amathos
(a) Sample image
L B A R A h L ol b gl

L R T \J’ [l}l\«'N\J’ C[EJH

(c) 180°

Amarl
Aasasssasasasasmasan

RED ANARTIA

Grenada 10¢

(b) 90°

»
“: l

VILAVNY d3d

501 epeuaIn)

taaaasass s B S Bt

IR RN

(d) 270°

Fig. 3. Original image and its rotated versions used in therical experiment.
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(c) SNR= —3.5dB (d) SNR= —6.5dB

Fig. 4. A compressed image and its noisy versions.
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We presented a Fourier transform based pattern recogratgorithm. The algorithm uses the mag-
nitudes of a small number of Fourier coefficients of an imageita signature vector. We presented
mathematical justifications as to why using a small numbeFairier coefficients as a signature vector
may be better than using all Fourier coefficients in the presef noise. Simulations were conducted to
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VI. CONCLUSIONS

demonstrate the effectiveness of the algorithm in noisyrenments.

(1]
(2]
(3]
(4]
(5]
(6]

(7]
(8]
(9]
[10]
[11]

[12]
[13]
[14]
[15]
[16]
[17]
(18]

REFERENCES

J. Altmann and H. J. P. Reitbock, “A fast correlation med for scale- and translation-invariant pattern recagmjt | EEE Transactions
on Pattern Analysis and Machine Intelligence, vol. PAMI-6, no. 1, pp. 46-57, January 1984.

H. J. Reithoeck and J. Altmann, “A model for size- and figta-invariant pattern processing in the visual systeBiglogical Cybernetics,
vol. 51, no. 2, pp. 113-121, 1984.

P. H. Gardenier, B. C. McCallum, and R. T. Bates, “Foutr@ansform magnitudes are unique pattern recognition tateg}’Biological
Cybernetics, vol. 54, no. 6, pp. 385-391, June 1986.

G. Y. Chen, T. D. Bui, and A. Krzyzak, “Invariant patteracognition using radon, dual-tree complex wavelet andiEotransforms,”
Pattern Recognition, vol. 42, no. 9, pp. 2013-2019, 2009.

R. Barakat and G. Newsam, “Necessary conditions for ajumisolution to two-dimensional phase recovety,”of Mathematical
Physics, vol. 25, no. 11, pp. 3190-3193, November 1984.

P. L. Van Hove, J. S. Lam, and A. V. Oppenheim, “Signal rstouction from Fourier transform amplitude,” Applications of Digital
Image Processing 1V, A. G. Tescher, Ed. P.O. Box 10, Bellingham, Washington 982@10: SPIE—The International Society for
Optical Engineering, 1982, pp. 214-225.
L. S. Taylor, “The phase retrieval problemEEE Transactions on Antennas and Propagation, vol. AP-29, no. 2, pp. 386—-391, March
1981.

E. J. Akutowicz, “On the determination of the phase of arfer integral, |,” Transactions of the American Mathematical Society,
vol. 83, pp. 179-192, 1956.

——, “On the determination of the phase of a fourier intdgil,” Proceedings of the American Mathematical Society, vol. 8, pp.
234-238, 1957.

M. H. Hayes, J. S. Lim, and A. V. Oppenheim, “Signal restaction from phase or magnituddEEE Transactions on Acoustics,
Foeech, and Sgnal Processing, vol. ASSP-28, no. 6, pp. 672-680, December 1980.

M. H. Hayes, “The reconstruction of a multidimensiorsdquence from the phase or magnitude of its Fourier tramsfdiEEE
Transactions on Acoustics, Speech, and Sgnal Processing, vol. ASSP-30, no. 2, pp. 140-154, April 1982.

R. H. T. Bates and M. J. McDonnellmage Restoration and Reconstruction. New York: Oxford University Press, 1986.

H. Dym and H. P. McKeankourier Series and Integrals. New York: Academic Press, 1972.

E. M. Stein and G. L. Weisdntroduction to Fourier Analysis on Euclidean Spaces. Princeton, N.J.: Princeton University Press, 1971.

J. S. WalkerFourier Analysis. New York: Oxford University Press, 1988.

R. C. Gonzalez and P. WintRigital Image Processing. Reading, Massachusetts: Addison-Wesley Publishing @osydnc., 1977.
L. Debnath and P. Mikusinskintroduction to Hilbert Spaces with Applications. San Diego: Academic Press, Inc., 1990.

C. Oh and S. HZzak, “Image recall using a large scale generalized Bra#teSin-a-Box neural network International Journal of
Applied Mathematics and Computer Science, vol. 15, no. 1, pp. 99-114, 2005.



