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1 Introdu
tionIt is well known that a binomial random variable is the sum of independentidenti
ally distributed Bernoulli random variables, and 
onversely. It is alsowell known that a hypergeometri
 random variable is the sum of dependentidenti
ally distributed Bernoulli random variables (see for example, Feller [2℄,Ross [4℄, or Wilks [5℄.) In this paper we show that a hypergeometri
 randomvariable is also the sum of independent Bernoulli random variables; see Harrisand Park [3℄ for a similar result for a di�erent probability model.To motivate our approa
h, we use the following standard interpretation ofthe hypergeometri
 distribution: Consider a list 
ontaining N binary digits,with b ones and r zeros. Sele
t n numbers from the list at random one at atime without repla
ement, Let Sn be the sum of the numbers sele
ted. Thenthe random variable Sn follows a hypergeometri
 distribution. We show thatthe random variables Sn has the same distribution as a sum of independentBernoulli random variables that are not ne
essarily identi
ally distributed.Theorem 1 Let Sn be random variable that follows a hypergeometri
 distribu-tion with parameters N; b; n. Then there exist min(b; n) independent Bernoullirandom variables su
h that their sum has the same probability distribution asSn.Theorem 1 follows from the following theorem. In the remainder of this paper,we let en = min(b; n). 2



Theorem 2 The fa
torial moment generating fun
tion gn(t) = E(1 + t)Sn ofSn 
an be fa
tored into gn(t) = en�j=1(1 + pjt); (1)where 0 < pj � 1 for j = 1; : : : ; en.The proof the theorems will expli
itly give P (Y = 1) for ea
h Bernoulli ran-dom variable Y in terms of the zeros of polynomials, whi
h 
an be evaluatednumeri
ally.A preliminary te
hni
al result required for the proofs of the main theoremsis given in Se
tion 2 and the proofs of Theorems 1 and 2 are given in Se
tion 3.Examples, along with an asymptoti
 result on the pj 's, are given in Se
tion 4.Se
tion 5 
ontains the 
on
lusions.2 A Te
hni
al ResultIn this se
tion, we prove a te
hni
al result on the zeros of 
ertain polynomialsrequired in the proof of the main result.Let N be a positive integer and let p be a polynomial with degree B, 0 <B � N , and p(0) = 1. Let fN = p and, for n = 1; : : : ; N , iteratively de�nefn�1(t) = fn(t)� tnf 0n(t);where f 0n denotes the derivate of fn. The following fa
ts follow immediately3



from the de�nitions of fn:1. f0(0) = � � � = fN(0) = 12. If deg fn = n, then deg fn�1 = n� 1.3. fn�1(t) = fn(t)� tnf 0n(t) = � tn+1n ddt �fn(t)tn �We next show that all zeros of fn are all real and in the interval (�1;�1℄ if allthe zeros of fN are real and in the interval (�1;�1℄.Theorem 3 If p has B real zeros in (�1;�1℄, thendeg fn = minfn;Bgand the zeros of ea
h fn are real and in (�1;�1℄.Proof By assumption, fN satis�es the stated 
laims. Suppose B < N . Thethe fun
tion qN (t) = fN (t)=tN is rational with a pole at t = 0 and has Bzeros in (�1;�1℄ and a zero at �1. It follows that qN has B 
riti
al points in(�1;�1℄. Sin
e fN�1 is a polynomial with degree at most B and has B zeros in(�1;�1℄, it is a polynomial with degree B with all real zeros (and in (�1;�1℄.)This argument is repeated for n = B +1; : : : ; N � 1. For n = 0; : : : ; B, we haveby Lemma 2 that deg fn = n = minfn;Bg. Also, the fun
tion qn(t) = fn(t)=tnhas n zeros in (�1;�1℄ but does not have a zero at �1. Therefore qn onlyhas n� 1 
riti
al points in (�1;�1℄ and so fn�1 has all its zeros in (�1;�1℄.4



If B = N , then by Lemma 2,deg fn = n = minfn;Ng;for n = 0; : : : ; N , and the proof as above for the 
ase of no zeros at �1 showsthat all the zeros of fn are real and in (�1;�1℄. The proof of the theorem is
omplete.Remark 1 Note the statement 
on
erning the 
riti
al points does require thezeros of the fn's be distin
t. It holds even if the zeros are repeated as in p(t) =(1 + t)B. One 
an expli
itly 
ompute fn for B = N and for B = 1 but thingsget tedious rapidly for the other B's.3 Proofs of Theorems 1 & 2Let gn(t) = E(1 + t)Sn be the fa
torial moment generating fun
tion of Sn.We obtain the 
oeÆ
ients of gn by equating the known form of the fa
torialmoments (see, for example, Wilks [5℄, p. 135) and the derivatives of gn at t = 0to give
gn(t) = enXk=0

0BB� bk 1CCA0BB� nk 1CCA0BB� Nk 1CCA tk; (2)
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where en = min(b; n), N = b + r, and n � N . A straightforward 
al
ulationusing Equation 2 shows that for n = 1; : : : ; N ,gn�1(t) = gn(t)� tng0n(t):Also, sin
e eN = min(b;N) = b,gN(t) = bXk=00BB� bk 1CCA tk = (1 + t)b: (3)We 
an now apply Theorem 3 to 
on
lude that the zeros of gn are real and arein the interval (�1;�1℄. Therefore gn 
an be written asgn(t) = en�j=1(1 + pjt); (4)where 0 < pj � 1. This 
ompletes the proof of Theorem 2.For Theorem 1, let Yj , j = 1; : : : ; en, be a sequen
e of independent Bernoullirandom variables with P (Yj = 1) = pj . ThenE[(1 + t)Y1+���+Yen ℄ = E(1 + t)Y1 � � � � �E(1 + t)Yen= en�j=1(1 + pjt)= gn(t):Thus Sn and Y1 + � � �+Yn have the same fa
torial moment generating fun
tionand are therefore equal in distribution. This 
ompletes the proof of Theorem 16



4 Examples and Further ResultsIn this se
tion, we illustrate our results with numeri
al examples and and presenta result related to the distribution of the probabilities pj as the population sizeN gets large.The �rst example uses small parameters and the 
al
ulation 
an be 
arriedout by hand. The se
ond example uses larger parameters and Matlab is usedto 
ompute the derivative and �nd the zeros of gn. A small simulation is alsogiven to 
ompare the a
tual values of the hypergeometri
 distribution to thevalues obtained by summing the Bernoulli random variables.Example 1 Consider an urn that 
ontains 5 marbles, 3 bla
k and 2 red mar-bles. Sele
t two marbles one at a time without repla
ement and let S2 denote thenumber of bla
k marbles sele
ted in two draws. The fa
torial moment generatingfun
tion of S2 is
g2(t) = 110 + 610(1 + t) + 310(1 + t)2= 1 + 1210 t+ 310 t2:The zeroes of g2 are r1 = �2 + p63 and r2 = �2� p63 ;
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and thus p1 = � 1r1 = 35 + p610 and p2 = � 1r2 = 35 � p610 :Simple 
al
ulations show thatp1p2 = 310 ; p1(1� p2) + p2(1� p1) = 610 ; (1� p1)(1� p2) = 110 ;as required. Thus S2 = Y1 + Y2, where Y1; Y2 are Bernoulli random variableswith probabilities p1; p2 respe
tively.The frequen
y domain remains the same, as in an in�nite population 
asewhi
h relate to Hardy-Weinberg Theorem. Hen
e Example 1 demonstrates thatHardy-Weinberg Theorem holds for a �nite population with adjusted frequen-
ies.Example 2 In this example, we use N = 50, b = 20 and n = 10. We useMatlab to �nd the zeros of g10, whi
h has degree 10, as given by Equation 2 andthen the pj 's, whi
h are, to 4 de
imal pla
es,f0:0947; 0:1511; 0:2123; 0:2784; 0:3491; 0:4234; 0:5006; 0:5802; 0:6620; 0:7483g :We generated 200; 000 sums of 10 independent Bernoulli random variables usingthese probabilities and 
al
ulated the empiri
al distribution of the sum for S10.
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The a
tual and the distributions are summarized in the following table:Sn A
tual Empiri
al0 0:0029 0:00281 0:0279 0:02862 0:1083 0:10743 0:2259 0:22514 0:2801 0:28115 0:2151 0:21486 0:1034 0:10377 0:0306 0:03068 0:0053 0:00539 0:0005 0:000410 0:0000 0:0000We see that the values of the empiri
ally 
al
ulated distribution 
losely mat
hthe a
tual values.As illustrated by Example 2, it is easy to 
al
ulate the pj 's for moderatevalues of N , b, and n. It is interesting to note that the pj 's satisfy the following
onditions: enXj=1 pj = en bN ; enXj=1 pj(1� pj) = n bN (N � b)N (N � n)(N � 1) :Example 2 and other numeri
al experiments show that pj 's are fairly uniformly9



distributed and are not 
lustered in a tight neighborhood of b=N for moderatevalues of b and N . However, the pj 's do 
luster around b=N for large b and N .More pre
isely, we have:Theorem 4 Let n be �xed positive integer and let p be a positive real number.Suppose b=N = p. Let g(N)n denote the fa
torial moment generating fun
tion forSn with population size N . Then1. g(N)n 
onverges uniformly to (1 + pt)n on 
ompa
t subsets of the 
omplexplane IC and2. for every � > 0, there is a positive integer N0 su
h that for N � N0, the
oeÆ
ient pj for ea
h fa
tor 1 + pjt of g(N)n satis�es jpj � pj < �.Proof For N large, we have from Equation 2 that
g(N)n (t) = nXk=0

0BB� bk 1CCA0BB� nk 1CCA0BB� Nk 1CCA tk (5)
= nXk=0 (1� 1b ) � � � (1� k�1b )(1� 1N ) � � � (1� k�1N ) 0BB� nk 1CCA (pt)k (6)As N !1, we have b = pN !1 andg(N)n (t)! nXk=00BB� nk 1CCA (pt)k = (1 + pt)n;10



pointwise and uniformly on 
ompa
t subsets of IC. Let � > 0. Sin
e (1 + pt)nhas a zero of order n at �1=p, Hurwitz's Theorem (see Dun
an [1℄, p. 225)implies that there is a positive integer N0 su
h that n of the zeros of g(N)n are inthe disk fz 2 IC : jz + 1=pj < �g. As a polynomial of degree n, g(N)n has exa
tlyn zeros (whi
h are all real by Theorem 1.) Therefore for all pj for whi
h 1+ pjtis a fa
tor of g(N)n , we have ����� 1pj + 1p ���� < �and thus jpj � pj < pjp� � �;sin
e 0 < p; pj � 1. The proof is 
omplete.Theorem 4 is another 
on�rmation that for N � n, sampling without re-pla
ement is almost the same as sampling with repla
ement. The di�eren
eis that with repla
ement, Sn is a sum of independent identi
ally distributedBernoulli random variables, and for sampling without repla
ement, Sn is a sumof independent distributed Bernoulli random variables that are almost identi-
ally distributed in the sense that the probabilities pj = P (Yj = 1) are almostequal.5 Con
lusionsWe have shown that the hypergeometri
 random variable 
an be represented asa sum of independent Bernoulli random variables, not identi
ally distributed,11



whereas the Binomial random variable 
an be represented a sum of independentidenti
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