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Abstract

In this paper we show that a hypergeometric random variable can be repre-
sented as a sum of independent Bernoulli random variables that are, except in
degenerate cases, not identically distributed. In the proof we use the factorial
moment generating function. An asymptotic result on the probabilities of the
Bernoulli random variables in the sum is also presented. Numerical examples

are used illustrated the results.
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1 Introduction

It is well known that a binomial random variable is the sum of independent
identically distributed Bernoulli random variables, and conversely. It is also
well known that a hypergeometric random variable is the sum of dependent
identically distributed Bernoulli random variables (see for example, Feller [2],
Ross [4], or Wilks [5].) In this paper we show that a hypergeometric random
variable is also the sum of independent Bernoulli random variables; see Harris
and Park [3] for a similar result for a different probability model.

To motivate our approach, we use the following standard interpretation of
the hypergeometric distribution: Consider a list containing N binary digits,
with b ones and r zeros. Select m» numbers from the list at random one at a
time without replacement, Let S,, be the sum of the numbers selected. Then
the random variable S,, follows a hypergeometric distribution. We show that
the random variables S;,, has the same distribution as a sum of independent

Bernoulli random variables that are not necessarily identically distributed.

Theorem 1 Let S,, be random variable that follows a hypergeometric distribu-
tion with parameters N,b,n. Then there exist min(b,n) independent Bernoulli

random variables such that their sum has the same probability distribution as

Sh.

Theorem 1 follows from the following theorem. In the remainder of this paper,

we let m = min(b, n).



Theorem 2 The factorial moment generating function g, (t) = E(1 + t)5" of

Sn can be factored into

[N=Fl
A

gn(t) = I1 (1 +p;t), (1)

j
where 0 <p; <1 forj=1,...,n.

The proof the theorems will explicitly give P(Y = 1) for each Bernoulli ran-
dom variable Y in terms of the zeros of polynomials, which can be evaluated
numerically.

A preliminary technical result required for the proofs of the main theorems
is given in Section 2 and the proofs of Theorems 1 and 2 are given in Section 3.
Examples, along with an asymptotic result on the p;’s, are given in Section 4.

Section 5 contains the conclusions.

2 A Technical Result

In this section, we prove a technical result on the zeros of certain polynomials
required in the proof of the main result.
Let N be a positive integer and let p be a polynomial with degree B, 0 <

B < N, and p(0) =1. Let fy =pand, for n =1,..., N, iteratively define

fa(8) = Falt) = 13 (0),

where f! denotes the derivate of f,,. The following facts follow immediately



from the definitions of f,:

L fo(0) = = fw(0) =1

2. If deg f, = n, then deg f,_1 =n — 1.

n+1
Fur 0= ) = L1100 = -2 4 | 2210

We next show that all zeros of f,, are all real and in the interval (—oo, —1] if all

the zeros of fn are real and in the interval (—oo, —1].

Theorem 3 If p has B real zeros in (—oo, —1], then
deg f, = min{n, B}

and the zeros of each f, are real and in (—oo, —1].

Proof By assumption, fy satisfies the stated claims. Suppose B < N. The
the function qn(t) = fn(t)/t"N is rational with a pole at t = 0 and has B
zeros in (—oo, —1] and a zero at —oo. It follows that gy has B critical points in
(—oc, —1]. Since fy_1 is a polynomial with degree at most B and has B zeros in
(—oc, —1], it is a polynomial with degree B with all real zeros (and in (—o0, —1].)
This argument is repeated forn =B+ 1,...,N —1. For n =0,..., B, we have
by Lemma 2 that deg f,, = n = min{n, B}. Also, the function ¢, (t) = f.(t)/t"
has n zeros in (—oo, —1] but does not have a zero at —oo. Therefore g, only

has n — 1 critical points in (—oo, —1] and so f,_1 has all its zeros in (—oo0, —1].



If B= N, then by Lemma 2,

deg fr, = n = min{n, N},

for n =0,..., N, and the proof as above for the case of no zeros at —oo shows
that all the zeros of f,, are real and in (—oo, —1]. The proof of the theorem is

complete.

Remark 1 Note the statement concerning the critical points does require the
zeros of the f,’s be distinct. It holds even if the zeros are repeated as in p(t) =
(1+t)B. One can explicitly compute f,, for B = N and for B = 1 but things

get tedious rapidly for the other B’s.

3 Proofs of Theorems 1 & 2

Let gn(t) = E(1 + t)%" be the factorial moment generating function of S,,.
We obtain the coefficients of g,, by equating the known form of the factorial
moments (see, for example, Wilks [5], p. 135) and the derivatives of g,, at t =0

to give

gn(t)
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where 7 = min(b,n), N = b+r, and n < N. A straightforward calculation

using Equation 2 shows that forn =1,... N,

In—1(t) = gu(t) — Hg;(t)-

Also, since N = min(b, N) = b,

We can now apply Theorem 3 to conclude that the zeros of g, are real and are

in the interval (—oc, —1]. Therefore g, can be written as

[N=F1
.

gn(t) = (1 +pjt)= (4)

J

where 0 < p; < 1. This completes the proof of Theorem 2.
For Theorem 1, let Y;, j =1,...,n, be a sequence of independent Bernoulli

random variables with P(Y; = 1) = p;. Then

B[+t ] = BA+HM x - x E(1+1)%
=1

(]. +pjt)

J

= gn(t).

Thus S, and Y7 + - -+ Y, have the same factorial moment generating function

and are therefore equal in distribution. This completes the proof of Theorem 1



4 Examples and Further Results

In this section, we illustrate our results with numerical examples and and present
a result related to the distribution of the probabilities p; as the population size
N gets large.

The first example uses small parameters and the calculation can be carried
out by hand. The second example uses larger parameters and Matlab is used
to compute the derivative and find the zeros of g,. A small simulation is also
given to compare the actual values of the hypergeometric distribution to the

values obtained by summing the Bernoulli random variables.

Example 1 Consider an urn that contains 5 marbles, 8 black and 2 red mar-
bles. Select two marbles one at a time without replacement and let Sy denote the
number of black marbles selected in two draws. The factorial moment generating

function of So is

1 6 3
) = —+—(1+4+8)+—(1+1?
pt) = THpl+)+s1+1)
12 3
= 14 S 22
100 10

The zeroes of g» are

V6 V6

7“1:—24—? and r9 = =2 — —,



and thus

and py = —— =
T2

L3, V6 L_3 V6
5 10 5 10°

Simple calculations show that

3 6 1
=2 (- 1-p) = —, (1-p)(1—ps) = —,
Pip2 = 15 pi(1=p2) +p2(1—p1) 10’ (1 =p1)(1 —p2) 10’

as required. Thus So = Y1 + Ys, where Y1,Ys are Bernoulli random variables

with probabilities py, p2 respectively.

The frequency domain remains the same, as in an infinite population case
which relate to Hardy-Weinberg Theorem. Hence Example 1 demonstrates that
Hardy-Weinberg Theorem holds for a finite population with adjusted frequen-

cies.

Example 2 In this example, we use N = 50, b = 20 and n = 10. We use
Matlab to find the zeros of g1g, which has degree 10, as given by Equation 2 and

then the p;’s, which are, to 4 decimal places,
{0.0947,0.1511,0.2123,0.2784, 0.3491, 0.4234, 0.5006, 0.5802, 0.6620, 0.7483} .

We generated 200,000 sums of 10 independent Bernoulli random variables using

these probabilities and calculated the empirical distribution of the sum for Syq.



The actual and the distributions are summarized in the following table:

S, | Actual | Empirical

0 | 0.0029 0.0028

1 | 0.0279 0.0286

2 | 0.1083 0.1074

3 | 0.2259 0.2251

4 | 0.2801 0.2811

9 | 0.2151 0.2148

6 | 0.1034 0.1037

7 | 0.0306 0.0306

8 | 0.0053 0.0053

9 | 0.0005 0.0004

10 | 0.0000 0.0000

We see that the values of the empirically calculated distribution closely match

the actual values.

As illustrated by Example 2, it is easy to calculate the p;’s for moderate
values of N, b, and n. It is interesting to note that the p;’s satisfy the following

conditions:

n b & b (N—0b)(N-n
;p]’:nﬁ= ;Pj(l—Pj):nN( N )ﬁ-

Example 2 and other numerical experiments show that p;’s are fairly uniformly



distributed and are not clustered in a tight neighborhood of /N for moderate

values of b and N. However, the p;’s do cluster around b/N for large b and N.

More precisely, we have:

Theorem 4 Let n be fized positive integer and let p be a positive real number.
(N)

Suppose b/N = p. Let gy, ’ denote the factorial moment generating function for

Sy with population size N. Then

1. gT(lN) converges uniformly to (1 + pt)™ on compact subsets of the complex

plane € and

2. for every € > 0, there is a positive integer Ny such that for N > Ny, the

coefficient p; for each factor 1 + p;t of gﬁlN) satisfies |p; — p| < e.

Proof For N large, we have from Equation 2 that

b n
n k k
M) = —— " (5)
k=0 N
k
(1= Ly...(1 - kL n
S L ©)
- a-5 |,
As N — oo, we have b = pN — oo and
n n
TAOESY (pt)* = (1+pt)",
k=0 | &k
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pointwise and uniformly on compact subsets of €'. Let € > 0. Since (1 + pt)"

has a zero of order n at —1/p, Hurwitz’s Theorem (see Duncan [1], p. 225)

implies that there is a positive integer Ny such that n of the zeros of gT(lN) are in

the disk {z € €' : |z + 1/p| < €}. As a polynomial of degree n, gT(lN) has exactly

n zeros (which are all real by Theorem 1.) Therefore for all p; for which 1+ p;t

is a factor of gT(lN)7 we have

and thus

Ipj — p| < pjpe <€,

since 0 < p,p; < 1. The proof is complete.

Theorem 4 is another confirmation that for N > n, sampling without re-
placement is almost the same as sampling with replacement. The difference
is that with replacement, S,, is a sum of independent identically distributed
Bernoulli random variables, and for sampling without replacement, S,, is a sum
of independent distributed Bernoulli random variables that are almost identi-
cally distributed in the sense that the probabilities p; = P(Y; = 1) are almost

equal.

5 Conclusions

We have shown that the hypergeometric random variable can be represented as

a sum of independent Bernoulli random variables, not identically distributed,

11



whereas the Binomial random variable can be represented a sum of independent

identically distributed Bernoulli random variables. We illustrated our result

with numerical examples.
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