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Abstract— The hypothalamic-pituitary-adrenal (HPA) axis is unknown input observer (UIO). (For a recent development
the body’s primary stress management system. The role of the of the UIO theory, the reader may wish to consult [4].)
HPA axis is to maintain bodily functions in the presence of Specifically, using only information about applied treatine

physical and mental stressors. This is accomplished by controlling d fthe h ts. th d ob
the body’s cortisol level. A non-linear mathematical model of and one of theé hormone measurements, th€ proposed observer

the HPA axis from the literature is used to construct a stressor Calculates concentrations of the three other hormonesviesto
estimator. The mathematical model of the HPA axis is in the and estimates the stressor affecting the individual.
state-space format containing an unknown input that models  |n the next section we discuss the HPA model used in this
the stressor acting on the body. The controlled input variable paper

models external treatment. The unknown input observer (UIO) '
is constructed to estimate the unknown input modeling the
stressor and its mathematical analysis is provied. Availability Il. THE HPA MODEL

of the stressor estimate can be employed in the design of effec- . .

tive treatment strategies for stress related diseases. Simulatie The HPA model used by us in this paper was proposed
studies illustrate the effectiveness of the proposed observbased by Gupta et al. [5] and modified by Ben-Zvi et al. [3]. A

stressor estimator. simplified schematic diagram of the HPA is shown in Figure 1.

I. INTRODUCTION

The hypothalamic-pituitary-adrenal (HPA) axis is a part Stressor
of the endocrine system. The endocrine system as well as ¢
its subsystem, the HPA axis, uses hormones to communicate
between the regions of the body. The regulation of hormones Hypothalamus <
maintains homeostasis—the process by which bodily funstion

are maintained at a constant level. This leads to a definition CRH

of stress as a state of disharmony in which the homeostasis of
the organism is threatened. Pituitary
Another approach to define stress was proposed by
McEwen [1] in 2002. To define stress McEwen introduced a ?
notion of allostasis—the process by which the body functions
change in response to surrounding stimuli. The term akosta Adrenal
is the opposite to the notion of homeostasis. An example-of al
lostais is the fight-or-flight response in which the symptithe
nervous system as well as the HPA axis are involved.
Irrespective of how we define stress, in order to be able S o ]
to devise effective treatment strategies preventing therse 9 1+ A simplified schematic diagram of the HPA axis.
effects of stress, it is desirable to have a means of measurin
stress. One way to get closer to this goal is through theThe HPA axis is responsible for a rapid response to stress
mathematical modeling of subsystems of the endocrine myst&timuli. An activation of the hypothalamus by a stressorsesu
that are linked to stress. In the past, the term stress wastasethe release of the corticotropin releasing hormone (CRHg T
denote both the causes and effects of the pressures. RecehtPothalamus is the control center of most of the body’s
the term stressor has been used for the stimulus that prevoRermonal systems. Upon reaching the pituitary gland, the
a stress response. CRH hormone induces the release of the adrenocorticotropic
A number of mathematical models of the HPA axis werBormone (ACTH) by the pituitary into the circulation that
proposed in the last six decades. For an overview of the HEaches the adrenal glands that are located on top of the
axis modeling, see [2]. In this paper, we utilize the HpAidneys. The ACTH stimulates the secretion of cortisol by th
model proposed by Ben-Zvi et al. [3], which can be viewegdrenals. The release of cortisol initiates metabolicctdféo
as a dynamical system with unknown input. Using this moddight the harmful effects of stress through negative feekibac

we construct a stressor estimator applying the theory of tH& hypothalamus and pituitary—see Figure 1. Once the state
of stress subsides, the concentration of ACTH and cortisol
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TABLE |

0.07
DESCRIPTION OF VARIABLES IN THEHPA MODEL.
Variable  Description 0.065
x1 CRH concentration '
T2 ACTH concentration
T3 Free GR concentration
T4 Cortisol concentration - 0.06
d Unknown input modeling x
stress action 5N
u Control variable modeling 0.055
treatment action
TABLE 1l 0.05
PARAMETER VALUES IN THE HPA MODEL
. Parameter  Description Value 0.045 ‘ i i i ; j
ki1 Inhibition constant for CRH synthesis 0.100 -0.2 -0.1 0 0.1 0.2 0.3
ked CRH degradation constant 1.000 d
kio Inhibition constant for ACTH synthesis  0.100
kad ACTH degradation constant 10.000 Fig. 3. Plots of the steady-state valueszefand x4 versusd.
ker GR synthesis constant 0.050
krd GR degradation constant 0.900
k Inhibition constant for GR synthesis 0.001 . )
concentrationz4, corresponding to the lower branch of the
curve in Figure 3. When the stress subsides, that is,0, the
This model has the form, individual will stay in t.he new eqU|I|br!um stat'e gorresmhmg
. to a depressed cortisol concentration. This is because the
i1 i keqaa ﬁ 0 equilibrium corresponding t@ = 0 is asymptotically stable
il . . .
i &ﬁ — koao 61 0 and so states “close” to it will be attracted by this asymptot
is | (@ ;32 0 d+ 0| % ically stable low cortisol equilibrium. Effective treatmiecan
1L4 .
4 R (zaca)? ~ Frd®s 0 1 be accomplished when the states as well as stress levels are

Ty — T4 available. In the following section, we propose a method to

. 1) estimate state variables as well as the stress level.
The parameter values we use are the same as in Ben-2vi et

al. [3] and are given in Table II.
Following the approach of Ben-2vi et al. [3], we can obtain !l CONSTRUCTION OF THE STATE AND STRESS
steady-state values of the state variables as a functioheof t ESTIMATOR

external stressor. In Figure 2, we show plots of the steady- \we use the unknown input observer (UIO) theory to con-
state values ofr; and z3 versusd. In Figure 3, we show stryct a state and stress estimator. The first observer was
pIOtS of the Steady'state values m and Ty versusd. Note proposed by Luenberger in the ear'y nineteen sixties [q]' [7
that in achronica"y Stressed indiVidual, COI’tiSO| Cortc&ti[)n, [8] for the purpose Of estimating the state Of a dynamica|
x4, is very low. Thus a healthy individual subjected to @ystem, referred to as a plant, based on limited measurement
prolonged extreme stresd, > 0.168, would settle down in of that system. More specifically, an observer is a detestimi
a stable equilibrium state corresponding to depressedsobrt gynamical system that can generate an estimate of the plant’
state using that plant’s input and output signals.

0.9. Generalizations of the Luenberger's observer to plants

with unknown inputs resulted in several unknown input ob-

0.8 server (UIO) architectures [9], [10], [11], [12], [13], [L415],
0.7 [16], [17], [18], [19], [20], [21], [4].
To proceed, we represent the HPA model given by (1) in a
0.6 compact format as
< 00 ; & = f(z) + byu + by(x)d. @)

We view the above model as the patient's model. We assume
that we can measure the ACTH concentration, thatzis,
Therefore our output is

Yy = 1‘2:[0 1 0 O]x

O I I I I I i — )
02  -01 0 01 02 03 cr
Let
Fig. 2. Plots of the steady-state valuesagf andx3 versusd. ey =Yy —§=cx—c.



Consider the following dynamical system, Q = Q" > 0 the solutionP = P to the Lyapunov matrix
equation,A" P + PA = —2Q, is positive definite. We take

& = f(&) + biu+ ba(2)Eey), (3) )
_ - T
wherez is the state estimate and the teffiife, ), called the V= 2¢ Pe
injection term, is to be determined. as the Lypaunov function candidate for system (8) and etalua
Definition 1: Dynamical system (3) is an observer of sysits Lyapunov derivative on the trajectories of (8) to obtain
tem (2) if . T,
lim &(t) = 2(t) V. = e Pe
oo = e'P(Ae+by(ze)(d— E))
for a set of initial conditionse(0) and z(0). 1
Lot (0) and(0) — ZeT (ATP n PA) e+ e Pby(x.,)(d — E)
2
e=x—% < —e'Qe+ ||Pbs||e]|d - E|.

denote the state observation error. Then the dynamics of ffaking into account (9) gives
observation error are governed by the following differenti .
equation ° g ¢ Vo< Al @lel + | Pba] e]?
. ) b () ba(3)E = — (Amin(Q) — pl|Pbe]]) [le]?,
¢ = J= _Af(w) +A 2(®)d - QEm) . where \.in (Q) is the minimal eigenvalue of). For V to be
fle+a) = £(&) + bale + &)d — by(2)E negative-definite it is sufficient that

= hle). 4
(6) ( ) < )\min(Q)
System (3) is an unknown input observer for system (2) if the | Pba|

above error system has an asymptotically stable equilibriys 11 satisfies the above constraint, then= 0 is a globally

state ate = 0. _ ~ asymptotically stable equilibrium state of the observageror
To proceed, we analyze the patient’s model dynamics givgpstem (8).

by (2). We assume that = 0. Then, for an operating constant

value of the stress level, we select a stable equilibriurte sta IV. STRESS ESTIMATOR ANALYSIS
Z.q. We then perform Taylor’s linearization of (2) about th
equilibrium point

(10)

2. Switching Injection Term

In this section, we discuss the estimation of the unknown
(Tegs Ueq =0, deg)- (5) input using a switching injection term. We have shown that, i
the steady-state, the errer— 0, and because of the switching

we obtamd nature of the injection ternk that we will use,e = 0 only at
S(@—xeg) = f(x)+biutby(z)d |so_lated_ points in time. Therefore is zeros only at isolated
dt points in time. We next show that can be estimated by
~ AT —xeq) + bru lowpass filteringF.
+bs(xeq)(d — deg), (6) Let ¢ be a smooth (infinitely differentiable) non-negative

. ) . ) function defined on the real line such th&t) = 0 for |t| > a
where A is the Jacobian matrix of f(z) + ba(x)d) with 5.4 that

respect tax evaluated at the equilibrium point (5). Note that d /°° S(r)dr =1
ba(x.q) is the Jacobian matrix dff ()+bs(x)d) with respect . o
to the inputd evaluated at the equilibrium point (5). We nexj ot

perform Taylor’s linearization of the observer dynamic t8 o
obtain, M= /

|6(7)| dr

— 00

i(i_w ) = A(&—20g)+brutba(2eq)(E(ey)—duy), (7) Since¢ is smooth,M is finite and is determined by the choice
eq) — eq eq -y €eq)»

dt of ¢, which can be considered as a design parameter. For each

The dynamics of the linearized observation error are, €>0, let L /4

. B==0(-]).

& = A= Beg) + baleg)(d — dog) ?e() ¢(>

—(A(& — Teg) + ba(Teg) (E — deg)) It is easy to see that. and¢, are only nonzero on the interval
= Ae+by(xeg)(d— E(ey)). (8) [—ea,ea]. As e — 0, the length of the support interval fef,
and¢. also tend to zero. A straightforward computation shows
Suppose now thai(0) — E(0) = 0 and that that
4~ B| < plle] ©) | ednar=1

for somey > 0. The matrix A was assumed to be asympynq
totically stable. Hence, by the Lyapunov’s theorem, see, fo o |<;5 ()] dr = M
example [22, p. 155], for any real positive definite matrix o mar =



Since the solution of Equation (8) is absolutely continu(mes &d
for example Equation (85) and Theorem 8 of Filipov [23]),we =~~~ 77777777

can apply integration by parts to obtain from Equation (&}th
for anyt,

/ bt —T)e dT—/ be(t — T)e(r) dr i £ ;})4>®5 y

It follows from Equation (8) that

1 = E
o0 — ,; d
ba(xeq) / ¢t —7)(d(T) — E(7)) dT

i
~
R,
>

/ be(t— T)e dT+A/ 6o(t — T)e(r) dr.

Becausebs(x.,) has a full column rank, its left inverse is B Gp
the same as its pseudoinverfsb We premultiply the above
equation bbe to obtain

Fig. 4. Observer-based stressor estimator analysis usiegrized models
of the HPA axis and the observer.
¢6 (t —7)d(r)dr — (/56 (t—71)E(T)dr

= b*/ ¢€ (t—1)e )d7+b*A/ pc(t —)e(t) dr. @n estimate ofd. We note here that the relay can also be
considered a high gain element becauseefot= 0, the slope
We have of the “tangent” iscc.
M
’/ be(t—T)e(r)dr | < . Te[t_sipt+€a] le(T) B. Linear Injection Term
In Section IV-A, we showed that can be estimated by

lowpass filtering of the output of the switching injectiomrte

o0
H/ bt — T)e(r) dr || < sup lle(r)]- We next show that a linear injection element can also be used.
—o0 TE[t—ea,t+eal We perform our analysis in the Laplace transform domain and,
For a fixede, it is clear that for convenience, we use the same symbol for the functions in
both the time and transform domains.
sup  |le(7)][ =0 Our stressor estimator can be represented by the block

T€li—earteal diagram shown in Figure 4, where

and that . .
Gp=cl[sly— A]" " b1, Gg=c[sls— A]" ba(xey).

— sup e(r)[[ =0

€ T —€a €a H H H H
€lt—casteal From the diagram and using the linearity Bf we see that

ast — oo becausee tends asymptotically t®. Note that the R

rate of convergence will depend on the design parameter d = E(y-9) .
We can now conclude that for large = E(Gpu+ Gyqd) — E(Gpu — Gq4d)
= EGgy(d—d).
/ de(t —1)d dTN/ ¢t — T)E(T)dT
Therefore,
One interpretation of the above is that the lowpassed ositput d= _EGa ) (12)
of d and E' are approximately equal. W is slowly varying 1+ EGq
relatively to E/, then by choosing the appropriateande, we It follows from the above that ifE/ is large for alls in the
have o spectrum ofd, then
d(t) ~ (t—T7)E(T)dr 11 5

)~ [ odt-nE@) (11) i B, ~d

for larget. which is the linear analogue of (11) in the Laplace transform
Our implementation o (e, ) uses the relay element domain. One possibl&, in the Laplace transform domain, is

o E(s) = k, wherek is a large positive gain. This corresponds
E(ey) = psign(ey), in the time domain to the input-output relationship
where
1 if e, >0 E(ey) = key,
signley,) =¢ 0 if e, =0

. which is simply a proportional control with a large gain.
-1 if e, <0

Of course, more sophisticated’'s can used to take into the
andp > 0 is a design parameter. We will see in Section IV-Biccount the spectral properties df and G, and possibly
that a high gain linear injection term can be used to obtaimprove the performance of the estimator.
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Fig. 5. Plots of the states versus time (e, ) = ke,.
V. SIMULATION EXPERIMENTS o Stress estimation
We present the results of two numerical experiments in- —d

—— d-estimate

volving two different types of stress estimators. In thetfirs 4|
simulation, we used a linear implementation of the element
E(ey). In the second simulation we tested a non-linear imple- ,|
mentation of the elemerf(e,) of the stressor estimator.

A. E(ey) = ke,

In the first simulation experiment, we usétle,) = ke,, 19 |

where we include the results of our simulations fo& 750.
We also applied a treatment strategy in the form

[ 027 for 0<t<10 -4 |
o 0 for t>10.

The initial condition of the patient model was selected to be =%, 5 10 15 20 25
Time (hr)

z(0)=[ 01 001 01 001] .
Fig. 6. Plots of the stressarand its estimate versus time fé(e, ) = ke,.
We selected zero initial conditions for the observer. Thesst

profile, using the MATLAB notation can be described as

d=0. 1% ((t>5) &(t <12)) +0. 5+ (t >20). )
. . B. E(ey) = psign(ey)
In Figure 5, we show plots of the HPA axis actual and

estimated states versus time. In Figure 6, we show a plotof th

estimated stress, versus time as well as a plot of the “actual”’ In this simulation experiment, we implemented the element
stressg, versus time. After transient decay, the observer tracke,) as E(e,) = psign(e,), where p = 4. The initial

the actual stressor with a steady-state error that depentteeo conditions were the same as in the previous simulation. in ou
gain k. simulations we approximated the rely function with a sighoi



Stress estimation
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——d—estimate||

(1]
(2

(3]

(4]

-4 L L L L [5]
0 5 10 15 20 25
Time (hr)
Fig. 7. Plots of the stressat and its estimate versus time fd&(e,) = [6]

psign(ey).

[71
8]
[9]

like function, that is, we used the following approximation

~_ %
|ey|‘|'l’7

sign(ey)

where we used = 0.001. The reason for this approximation[io]
is the the relay function is discontinuous at 0, which yields
a lot of chattering and slows down simulations. Note that

v — 0, the sigmoid-like function tends pointwise to the relay
function.

The plots of states versus time were very similar to those ¢!
the previous simulation—see Figure 5. A plot of the estimated
stressord, versus time as well as a plot of the “actual” stressoa3]
d, versus time for the case whefi(e,) = psign(e,) are
shown in Figure 7. As can be seen from this figure, the strgss
estimator works even better than in the previous case.

[15]
VI. CONCLUSIONS

Stress may be responsible for symptoms as diverse [
disorders of mood and memory, skin lesions, excess acidity
that impairs digestion and absorption, inability to detpxi [17]
systemic poisons, and neurotransmitter malfunctions gmon
many other symptoms [24, p. 201]. According the the AmerEiS]
can Institute of Stress (AIS), stress is America’s leadieglth
problem. Stress has been with us from the beginning of the
human race. Yet, even now in the 21-st century we do nigP
have one commonly accepted definition of stress. Stress is
something that we can feel. Even though stress may be2@
highly subjective phenomenon, we need to find a way [91]
measure, or quantitatively estimate stress. In this paper,
proposed an approach to model-based stress estimatiom usin
the HPA axis mathematical model of Ben-Zvi et al [3]. [22]

The model used by us in this paper focuses on a singg;
hormone, cortisol, which is somewhat biologically limgin
despite the fact that cortisol is a major stress hormone.
next step is to apply our approach, that is based on the theory
of the unknown input observers, to a more detailed model

of the HPA axis that account for the delays in the endocrine
system.
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