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1 IntrodutionIt is well known that a binomial random variable is the sum of independentidentially distributed Bernoulli random variables, and onversely. It is alsowell known that a hypergeometri random variable is the sum of dependentidentially distributed Bernoulli random variables (see for example, Feller [2℄,Ross [4℄, or Wilks [5℄.) In this paper we show that a hypergeometri randomvariable is also the sum of independent Bernoulli random variables; see Harrisand Park [3℄ for a similar result for a di�erent probability model.To motivate our approah, we use the following standard interpretation ofthe hypergeometri distribution: Consider a list ontaining N binary digits,with b ones and r zeros. Selet n numbers from the list at random one at atime without replaement, Let Sn be the sum of the numbers seleted. Thenthe random variable Sn follows a hypergeometri distribution. We show thatthe random variables Sn has the same distribution as a sum of independentBernoulli random variables that are not neessarily identially distributed.Theorem 1 Let Sn be random variable that follows a hypergeometri distribu-tion with parameters N; b; n. Then there exist min(b; n) independent Bernoullirandom variables suh that their sum has the same probability distribution asSn.Theorem 1 follows from the following theorem. In the remainder of this paper,we let en = min(b; n). 2



Theorem 2 The fatorial moment generating funtion gn(t) = E(1 + t)Sn ofSn an be fatored into gn(t) = en�j=1(1 + pjt); (1)where 0 < pj � 1 for j = 1; : : : ; en.The proof the theorems will expliitly give P (Y = 1) for eah Bernoulli ran-dom variable Y in terms of the zeros of polynomials, whih an be evaluatednumerially.A preliminary tehnial result required for the proofs of the main theoremsis given in Setion 2 and the proofs of Theorems 1 and 2 are given in Setion 3.Examples, along with an asymptoti result on the pj 's, are given in Setion 4.Setion 5 ontains the onlusions.2 A Tehnial ResultIn this setion, we prove a tehnial result on the zeros of ertain polynomialsrequired in the proof of the main result.Let N be a positive integer and let p be a polynomial with degree B, 0 <B � N , and p(0) = 1. Let fN = p and, for n = 1; : : : ; N , iteratively de�nefn�1(t) = fn(t)� tnf 0n(t);where f 0n denotes the derivate of fn. The following fats follow immediately3



from the de�nitions of fn:1. f0(0) = � � � = fN(0) = 12. If deg fn = n, then deg fn�1 = n� 1.3. fn�1(t) = fn(t)� tnf 0n(t) = � tn+1n ddt �fn(t)tn �We next show that all zeros of fn are all real and in the interval (�1;�1℄ if allthe zeros of fN are real and in the interval (�1;�1℄.Theorem 3 If p has B real zeros in (�1;�1℄, thendeg fn = minfn;Bgand the zeros of eah fn are real and in (�1;�1℄.Proof By assumption, fN satis�es the stated laims. Suppose B < N . Thethe funtion qN (t) = fN (t)=tN is rational with a pole at t = 0 and has Bzeros in (�1;�1℄ and a zero at �1. It follows that qN has B ritial points in(�1;�1℄. Sine fN�1 is a polynomial with degree at most B and has B zeros in(�1;�1℄, it is a polynomial with degree B with all real zeros (and in (�1;�1℄.)This argument is repeated for n = B +1; : : : ; N � 1. For n = 0; : : : ; B, we haveby Lemma 2 that deg fn = n = minfn;Bg. Also, the funtion qn(t) = fn(t)=tnhas n zeros in (�1;�1℄ but does not have a zero at �1. Therefore qn onlyhas n� 1 ritial points in (�1;�1℄ and so fn�1 has all its zeros in (�1;�1℄.4



If B = N , then by Lemma 2,deg fn = n = minfn;Ng;for n = 0; : : : ; N , and the proof as above for the ase of no zeros at �1 showsthat all the zeros of fn are real and in (�1;�1℄. The proof of the theorem isomplete.Remark 1 Note the statement onerning the ritial points does require thezeros of the fn's be distint. It holds even if the zeros are repeated as in p(t) =(1 + t)B. One an expliitly ompute fn for B = N and for B = 1 but thingsget tedious rapidly for the other B's.3 Proofs of Theorems 1 & 2Let gn(t) = E(1 + t)Sn be the fatorial moment generating funtion of Sn.We obtain the oeÆients of gn by equating the known form of the fatorialmoments (see, for example, Wilks [5℄, p. 135) and the derivatives of gn at t = 0to give
gn(t) = enXk=0

0BB� bk 1CCA0BB� nk 1CCA0BB� Nk 1CCA tk; (2)
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where en = min(b; n), N = b + r, and n � N . A straightforward alulationusing Equation 2 shows that for n = 1; : : : ; N ,gn�1(t) = gn(t)� tng0n(t):Also, sine eN = min(b;N) = b,gN(t) = bXk=00BB� bk 1CCA tk = (1 + t)b: (3)We an now apply Theorem 3 to onlude that the zeros of gn are real and arein the interval (�1;�1℄. Therefore gn an be written asgn(t) = en�j=1(1 + pjt); (4)where 0 < pj � 1. This ompletes the proof of Theorem 2.For Theorem 1, let Yj , j = 1; : : : ; en, be a sequene of independent Bernoullirandom variables with P (Yj = 1) = pj . ThenE[(1 + t)Y1+���+Yen ℄ = E(1 + t)Y1 � � � � �E(1 + t)Yen= en�j=1(1 + pjt)= gn(t):Thus Sn and Y1 + � � �+Yn have the same fatorial moment generating funtionand are therefore equal in distribution. This ompletes the proof of Theorem 16



4 Examples and Further ResultsIn this setion, we illustrate our results with numerial examples and and presenta result related to the distribution of the probabilities pj as the population sizeN gets large.The �rst example uses small parameters and the alulation an be arriedout by hand. The seond example uses larger parameters and Matlab is usedto ompute the derivative and �nd the zeros of gn. A small simulation is alsogiven to ompare the atual values of the hypergeometri distribution to thevalues obtained by summing the Bernoulli random variables.Example 1 Consider an urn that ontains 5 marbles, 3 blak and 2 red mar-bles. Selet two marbles one at a time without replaement and let S2 denote thenumber of blak marbles seleted in two draws. The fatorial moment generatingfuntion of S2 is
g2(t) = 110 + 610(1 + t) + 310(1 + t)2= 1 + 1210 t+ 310 t2:The zeroes of g2 are r1 = �2 + p63 and r2 = �2� p63 ;
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and thus p1 = � 1r1 = 35 + p610 and p2 = � 1r2 = 35 � p610 :Simple alulations show thatp1p2 = 310 ; p1(1� p2) + p2(1� p1) = 610 ; (1� p1)(1� p2) = 110 ;as required. Thus S2 = Y1 + Y2, where Y1; Y2 are Bernoulli random variableswith probabilities p1; p2 respetively.The frequeny domain remains the same, as in an in�nite population asewhih relate to Hardy-Weinberg Theorem. Hene Example 1 demonstrates thatHardy-Weinberg Theorem holds for a �nite population with adjusted frequen-ies.Example 2 In this example, we use N = 50, b = 20 and n = 10. We useMatlab to �nd the zeros of g10, whih has degree 10, as given by Equation 2 andthen the pj 's, whih are, to 4 deimal plaes,f0:0947; 0:1511; 0:2123; 0:2784; 0:3491; 0:4234; 0:5006; 0:5802; 0:6620; 0:7483g :We generated 200; 000 sums of 10 independent Bernoulli random variables usingthese probabilities and alulated the empirial distribution of the sum for S10.
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The atual and the distributions are summarized in the following table:Sn Atual Empirial0 0:0029 0:00281 0:0279 0:02862 0:1083 0:10743 0:2259 0:22514 0:2801 0:28115 0:2151 0:21486 0:1034 0:10377 0:0306 0:03068 0:0053 0:00539 0:0005 0:000410 0:0000 0:0000We see that the values of the empirially alulated distribution losely maththe atual values.As illustrated by Example 2, it is easy to alulate the pj 's for moderatevalues of N , b, and n. It is interesting to note that the pj 's satisfy the followingonditions: enXj=1 pj = en bN ; enXj=1 pj(1� pj) = n bN (N � b)N (N � n)(N � 1) :Example 2 and other numerial experiments show that pj 's are fairly uniformly9



distributed and are not lustered in a tight neighborhood of b=N for moderatevalues of b and N . However, the pj 's do luster around b=N for large b and N .More preisely, we have:Theorem 4 Let n be �xed positive integer and let p be a positive real number.Suppose b=N = p. Let g(N)n denote the fatorial moment generating funtion forSn with population size N . Then1. g(N)n onverges uniformly to (1 + pt)n on ompat subsets of the omplexplane IC and2. for every � > 0, there is a positive integer N0 suh that for N � N0, theoeÆient pj for eah fator 1 + pjt of g(N)n satis�es jpj � pj < �.Proof For N large, we have from Equation 2 that
g(N)n (t) = nXk=0

0BB� bk 1CCA0BB� nk 1CCA0BB� Nk 1CCA tk (5)
= nXk=0 (1� 1b ) � � � (1� k�1b )(1� 1N ) � � � (1� k�1N ) 0BB� nk 1CCA (pt)k (6)As N !1, we have b = pN !1 andg(N)n (t)! nXk=00BB� nk 1CCA (pt)k = (1 + pt)n;10



pointwise and uniformly on ompat subsets of IC. Let � > 0. Sine (1 + pt)nhas a zero of order n at �1=p, Hurwitz's Theorem (see Dunan [1℄, p. 225)implies that there is a positive integer N0 suh that n of the zeros of g(N)n are inthe disk fz 2 IC : jz + 1=pj < �g. As a polynomial of degree n, g(N)n has exatlyn zeros (whih are all real by Theorem 1.) Therefore for all pj for whih 1+ pjtis a fator of g(N)n , we have ����� 1pj + 1p ���� < �and thus jpj � pj < pjp� � �;sine 0 < p; pj � 1. The proof is omplete.Theorem 4 is another on�rmation that for N � n, sampling without re-plaement is almost the same as sampling with replaement. The di�ereneis that with replaement, Sn is a sum of independent identially distributedBernoulli random variables, and for sampling without replaement, Sn is a sumof independent distributed Bernoulli random variables that are almost identi-ally distributed in the sense that the probabilities pj = P (Yj = 1) are almostequal.5 ConlusionsWe have shown that the hypergeometri random variable an be represented asa sum of independent Bernoulli random variables, not identially distributed,11



whereas the Binomial random variable an be represented a sum of independentidentially distributed Bernoulli random variables. We illustrated our resultwith numerial examples.Referenes[1℄ Dunan, J., (1968), The Elements of Complex Analysis, John Wiley andSons, New York.[2℄ Feller, W., (1968), An Introdution to Probability Theory and Its Applia-tions, Volume I, Third Edition, John Wiley and Sons, New York[3℄ Harris, B. and Park, C. J., (1971), \A Note on the Asymptoti Normalityof the Distribution of the Number of Empty Cells in Oupany Problems,"Ann. of the Institute of Statistial Mathematis, 23, pp. 507-513.[4℄ Ross, Sheldon, (2002), Introdution to Probability Model, Aademi Press.[5℄ Wilks, S.S., (1962), Mathematial Statistis, John Wiley and Sons, NewYork.
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