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Abstract— The objective of this paper is to investigate the use
of observers in the sensorless control of induction motor drives.
First, three recently proposed rotor flux and speed observers for
induction motors are analyzed and compared using a unified
notation. Unresolved issues for each method are noted. Then,
an alternative rotor flux and speed observer architecture is
described, which is simulated and tested experimentally. The
conclusion of our study is that observers can perform well
estimating the rotor speed and the estimates can be used in a
control strategy instead of speed values obtained by the sensors.

I. I NTRODUCTION

An observer is an auxiliary dynamical system that uses
the plant’s input and output signals to generate an estimate
of the plant’s state, which can then be employed to close
the control loop. An observer can also be used to augment
or replace sensors in a control system. Effective control
strategies of induction motor drive systems require speed as
well as the flux estimates. In this paper, we analyze and
compare four different rotor flux and speed observers for
induction motors using a unified notation. We first review
the three recently proposed rotor flux and speed observers for
induction motors and then describe an alternative rotor flux
and speed observer architecture for an induction motor. We
first analyze the adaptive flux observer of Kubota, Matsuse and
Nakano [1], where Luenberger’s full-order observer is utilized
to estimate the stator currents and rotor fluxes using the fourth-
order portion of the fifth-order induction motor model in
the stationary reference frame and assuming constant rotor
speed. Then, a proportional-plus-integral formula is employed
to implement the proposed scheme for speed estimation. The
above architecture was also analyzed and tested in [2]. Next,
we analyze the architecture of Derdiyok et al. [3], where the
output of a sliding-mode observer is used in the formula for the
flux to obtain an estimate of the rotor flux. We then compare
the above two architectures with the rotor flux and speed
sliding mode observer proposed by Utkin, Guldner and Shi [4],
which is also based on the fourth-order portion of the fifth-
order induction motor model in the stationary reference frame
and assuming the constant rotor speed. We do not discuss in
this paper the Verghese and Sanders’ flux observer [5] where
the authors focus on estimating the rotor flux only. For further
discussion concerning the role the observers play in sensorless

Fig. 1. A 2-pole, 3-phase, smooth air-gap, cage induction motor.

control of induction motors the reader may consult [6]. We
then proceed with the development of an alternative observer
for rotor flux and speed. We represent the standard model of
the induction motor in the form

ẋ = Ax + B1u1 + B2u2(x, τL),

where the vector functionu2 models lumped nonlinearities
in the model andτl is the load torque. The dynamics of the
proposed observer are described by

˙̂x = Ax̂ + B1u1 + B2u2(x̂, τ̂L),

wherex̂ is the state estimate and̂τL is the load torque estimate.

II. I NDUCTION MOTOR MODELING

A three-pole three-phase smooth air gap induction machine
is shown in Figure 1. We use an equivalent two-phase two-
pole representation shown in Figure 2. Definitions of state and
control variables are given in Table I. Parameters that appear in
the modeling equations are given in Table II. We first write the
voltage equations for the 2-phase symmetrical smooth air-gap



Fig. 2. Converting from 3-phase to a 2-phase equivalent representation.

TABLE I

STATE VARIABLES USED IN THE MODELING OF THE INDUCTION MOTOR.

ω rotor angular speed
λar rotor flux linkage of phasea
λbr rotor flux linkage of phaseb
ias stator current in phasea
ibs stator current in phaseb
uas stator voltage of phasea
ubs stator voltage of phaseb
τL load torque

cage induction motor model:

uas = Rsias +
dψas

dt

ubs = Rsibs +
dψbs

dt

0 = Rriar +
dψar

dt

0 = Rribr +
dψbr

dt
.

We assume that the magnetic system is linear and therefore
the flux linkages may be expressed as linear functions of
inductances and currents. The stator and rotor windings are
in relative motion. When the magnetic axes are aligned,
the magnetic coupling between the corresponding windings
is maximized and the corresponding mutual inductance is

TABLE II

PARAMETERS THAT APPEAR IN THE MODEL OF THE INDUCTION MOTOR.

Rr , Rs resistance of the rotor, respectively, stator windings
Lr , Ls self-inductance of the rotor, respectively, stator windings

Lm mutual inductance of the rotor and stator windings
np number of the pole pairs
D viscous friction coefficient
η = Rr

Lr

σ = 1 −
L2

m

LrLs
leakage parameter

β = Lm

σLrLs

µ = 3

2

npLm

JLr

γ = 1

σLs

�
Rs +

L2
m

L2
r

Rr�

positive and maximized. When the magnetic axes are per-
pendicular, the magnetic coupling is zero and the mutual
inductance value is zero. Taking the above into account, we
obtain

uas = Rsias +
dψas

dt
= Rsias + Ls

dias

dt

+Lm

d

dt
(iar cos(npθ) − ibr sin(npθ))

ubs = Rsibs +
dψbs

dt
= Rsibs + Ls

dibs

dt

+Lm

d

dt
(iar sin(npθ) + ibr cos(npθ))

0 = Rriar +
dψar

dt
= Rriar + Lr

diar

dt

+Lm

d

dt
(ias cos(npθ) + ibs sin(npθ))

0 = Rribr +
dψbr

dt
= Rriar + Lr

diar

dt

+Lm

d

dt
(−ias sin(npθ) + ibs cos(npθ))

J
dω

dt
= npLm (ibs (iar cos(npθ) − iar sin(npθ))

−ias (iar sin(npθ) + ibr cos(npθ)))

−Dω − τL.

We next apply a model simplifying transformation of the 2-
phase equivalent model. Specifically, we use the equivalentset
of rotor flux linkages

[

λar

λbr

]

=

[

cos(npθ) − sin(npθ)
sin(npθ) cos(npθ)

] [

ψar

ψbr

]

to obtain

λar = Lr(iar cos(npθ) − ibr sin(npθ)) + Lmias

λbr = Lr(iar sin(npθ) + ibr cos(npθ)) + Lmibs.

After some manipulations, we can represent the two-phase
equivalent model of a three-phase cage induction motor in
the form:

dω
dt

= µ(λaribs − λbrias) − D
J
ω − τL

J
dλar

dt
= −ηλar − npωλbr + ηLmias

dλbr

dt
= −ηλbr + npωλar + ηLmibs

dias

dt
= ηβλar + npβωλbr − γias + 1

σLs
uas

dibs

dt
= ηβλbr − npβωλar − γibs + 1

σLs
ubs























(1)

The above is the cage induction motor model in the stationary
reference frame. We illustrate the above modeling equations
in Figure 3.

III. K UBOTA, MATSUSE AND NAKANO ’ S ADAPTIVE FLUX

AND SPEEDOBSERVER

Kubota, Matsuse and Nakano [1] use the following fourth-
order portion of model (1) when constructing their observer,

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Fig. 3. Induction motor drive two-phase equivalent model schematic.
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[

uas

ubs

]

= Arx + Brus,

y =

[

0 0 1 0
0 0 0 1

]

x

= Crx,

where the subscript ‘r’ is used to indicate the reduced-order
model. We rearranged the order of modeling equations that
Kubota et al. [1] use for the sake of uniformity of our
discussion in this paper. Using the above model, Kubota et
al. [1] construct the Luenberger full-order observer of theform

d

dt
x̂ = Ârx̂ + Brus + Lr(is − îs),

where the symbol̂Ar, rather thanAr, is used in the observer
to denote that an estimated value ofω is utilized. Let

∆ω = ω̂ − ω and ∆Ar = Âr − Ar.

Then

∆Ar =









−η −npω̂ ηLm 0
npω̂ −η 0 ηLm

ηβ npβω̂ −γ 0
−npβω̂ ηβ 0 −γ









−









−η −npω ηLm 0
npω −η 0 ηLm

ηβ npβω −γ 0
−npβω ηβ 0 −γ









=









0 −np∆ω 0 0
np∆ω 0 0 0

0 npβ∆ω 0 0
−npβ∆ω 0 0 0









.

Let e = x − x̂, then it follows fromÂr = Ar + ∆Ar that

d

dt
e = Arx + Bus − Ârx̂ − Brus − Lr(y − ŷ)

= Arx − Arx̂ − ∆Arx̂ − LrCr(x − x̂)

= (Ar − LrCr)e − ∆Arx̂. (2)

Kubota et al. [1] next postulate selectingLr so that

(Ar − LrCr)
T + (Ar − LrCr) < 0, (3)

which amounts to finding an observer gain matrixLr so that
V (e) = eT e is a Lyapunov function for the systeṁe =
(Ar − LrCr)e, that is,

(Ar − LrCr)
T + (Ar − LrCr) = −Q,

whereQ = QT > 0. The above requirement greatly simpli-
fies further analysis; however, sufficiency conditions for the
existence of the gain matrixLr such that (3) is satisfied is
not discussed in their paper and appears to be unknown in
the iterature. Kubota et al. [1] then consider an augmented
Lyapunov’s function candidate:

V (e,∆ω) = eT e +
1

α
(ω̂ − ω)2,

whereα > 0 is a design parameter. Recall that∆ω = ω̂ − ω.
In their further development Kubota et al. [1] assume thatω
is constant. Then, evaluating the time derivative ofV (e,∆ω)
on the trajectories of (2) gives

d

dt
V (e,∆ω) =

d

dt

(

eT e +
1

α
(∆ω)2

)

= 2eT ė +
2

α
∆ω

d

dt
∆ω

= 2eT ((Ar − LrCr)e − ∆Arx̂)

+
2

α
∆ω

d

dt
ω̂

= −eT Qe − 2eT ∆Arx̂

+
2

α
∆ω

d

dt
ω̂. (4)

To proceed, we need to evaluate

eT ∆Arx̂

=
[

λar − λ̂ar λbr − λ̂br ias − îas ibs − îbs

]

×


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0 −np∆ω 0 0
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0 npβ∆ω 0 0
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T

×
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
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−np∆ωλ̂br

np∆ωλ̂ar

npβ∆ωλ̂br

−npβ∆ωλ̂ar









= ∆ω
(

−
(

λar − λ̂ar

)

npλ̂br

+
(

λbr − λ̂br

)

npλ̂ar + (ias − îas)npβλ̂br

−(ibs − îbs)npβλ̂ar

)

= ∆ω
(

−λarnpλ̂br + λ̂arnpλ̂br + λbrnpλ̂ar

−λ̂brnpλ̂ar + (ias − îas)npβλ̂br

−(ibs − îbs)npβλ̂ar

)

.



Kubota et al. [1] assume, without stating this explicitly, that

λarnpλ̂br = λbrnpλ̂ar,

that is,
λarλ̂br = λ̂arλbr. (5)

Taking the above into account in the expression foreT ∆Arx̂

yields

eT ∆Arx̂ = ∆ω(ias − îas)npβλ̂br − (ibs − îbs)npβλ̂ar.

Substituting the above into (4) gives

d

dt
V (e,∆ω)

= −eT Qe − 2∆ω
(

(ias − îas)npβλ̂br

−(ibs − îbs)npβλ̂ar

)

+
2

α
∆ω

d

dt
ω̂

= −eT Qe + 2∆ω

(

1

α

d

dt
ω̂ −

(

(ias − îas)npβλ̂br

−(ibs − îbs)npβλ̂ar

))

.

If we let

d

dt
ω̂ = α

(

(ias − îas)npβλ̂br − (ibs − îbs)npβλ̂ar

)

,

then d
dt
V (e,∆ω) = −eT Qe ≤ 0 in the augmented

[

e

∆ω

]

-

space. Recall that the adaptive scheme was obtained under the
assumption thatω is constant. Kubota et al. [1] propose to use
the PI control to implement the above scheme,

ω̂ = KP

(

(ias − îas)npβλ̂br − (ibs − îbs)npβλ̂ar

)

+ KI

∫

(

(ias − îas)npβλ̂br − (ibs − îbs)npβλ̂ar

)

dt.

In summary, the observer of Kubota, Matsuse, and Nakano [1]
has the form,

d

dt
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[

uas

ubs

]

+ Lr

([

îas − ias

îbs − ibs

])

ω̂ = KP

(

(ias − îas)npβλ̂br − (ibs − îbs)npβλ̂ar

)

+KI

∫

(

(ias − îas)npβλ̂br − (ibs − îbs)npβλ̂ar

)

dt.

IV. SLIDING MODE OBSERVER OFDERDIYOK, GÜVEN,
REHMAN , INANC AND XU

As in the observer of Kubota et al., Derdiyok et al. [3]
use the fourth-order portion of the fifth-order induction motor
model in the stationary reference frame. We now describe the
representation of the model that Derdiyok et al. [3] use when
constructing their observer. Let

Aω =

[

η npω
−npω η

]

.

Then we can represent the reduced-order model as:

dλr

dt
= −Aωλr + ηLmis (6)

dis

dt
= βAωλr − γis +

1

σLs

us. (7)

The following switching surface is defined,

s =

[

sa

sb

]

=

[

îas − ias

îbs − ibs

]

= 0.

Let

ν = −ν0
[

sign(sa)
sign(sb)

]

= −ν0
[

sign(̂ias − ias)

sign(̂ibs − ibs)

]

.

Derdiyok et al. [3] propose the current observer:

dîs

dt
= βν − γîs +

1

σLs

us. (8)

We now use the arguments of Derdiyok et al. [3] to show
that the surface{s = 0} is attractive for sufficiently large
gainν0. For this we consider a generalized Lyapunov function
candidate,V = 0.5sT s, which can be viewed as a distance
measure from{s = 0}, We then find the Lyapunov derivative
of V , that is, the time derivative ofV evaluated on the
trajectories of the observer,̇V = sT ṡ, where

ṡ =
d

dt
îs −

d

dt
is

= βν − γîs +
1

σLs

vs − βAωλr + γis −
1

σLs

vs

= β (ν − βAωλr) − γ
(

îs − is

)

.

Let

sign(x) =
[

sign(x1) sign(x2) · · · sign(xn)
]T
.

Then

V̇ = β
(

îs − is

)T

(ν − βAωλr) − γ
∥

∥

∥
îs − is

∥

∥

∥

2

= −βν0
(

îs − is

)T

sign
(

îs − is

)

− γ
∥

∥

∥
îs − is

∥

∥

∥

2

−β2
(

îs − is

)T

Aωλr

= −βν0
(∣

∣

∣̂
isa − isa

∣

∣

∣
+
∣

∣
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isb − isb

∣

∣

∣

)

− γ
∥

∥

∥
îs − is

∥

∥

∥

2

−β2
(

îs − is

)T

Aωλr.



Note thatβ > 0. Thus V̇ < 0 if

ν0

(∣

∣

∣̂
isa − isa

∣

∣

∣
+
∣

∣

∣̂
isb − isb

∣

∣

∣

)

> −γ
β

∥

∥

∥
îs − is

∥

∥

∥

2

−β
(

îs − is

)T

Aωλr.

Therefore,V̇ < 0 if

ν0 >

β

∣

∣

∣

∣

(

îs − is

)T

Aωλr

∣

∣
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∣

− γ
β

∥

∥

∥
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∥

∥

2

∣
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∣

∣
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∣

∣
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isb − isb

∣

∣

∣

.

The above condition requires careful analysis. Note that for the
system in sliding the denominator of the term on the right-hand
side of the above condition is 0 and the fraction is not defined.
Derdiyok et al. [3] do not discuss this issue in their paper. We
analyze the situation as follows. The key is that, in practice, the
denominator is small and not identically 0 in sliding and we
must be careful that the fraction does not become unbounded
as the denominator tends to 0. We analyze the terms in the
numerator separately. If

∣
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We next analyze the other term is the numerator. Recall that
Aωλr =
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. Hence,
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The above inequalities give, for0 <
∣
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+
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îs − is

)T

Aωλr

∣

∣

∣

∣

− γ
β

∥

∥

∥
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β
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We conclude that the fraction is bounded for practical pur-
poses.

When the observation error is in sliding mode along the
surface{s = 0}, we have

îs − is = 0 and
d

dt

(

îs − is

)

= 0.

It follows from the above conditions applied to (7) and (8)
that in sliding,ν = Aωλr. Substituting the above into the
modeling equation gives

d

dt
λr = −ν + ηLmis.

We solve the above forλr and then usingν = Aωλr, we
obtain

[

ν1
ν2

]

=

[

η npω
−npω η

] [

λar

λbr

]

=

[

ηλar + npωλbr

−npωλar + ηλbr

]

=

[

λar λbr

λbr −λar

] [

η
npω

]

.

Hence
[

η
npω

]

= − 1

λ2
ar + λ2

br

[

−λar −λbr

−λbr λar

] [

ν1
ν2

]

,

that is, we have an estimate of the motor time constant,η, as
well as the rotor speed,ω.

V. SLIDING MODE OBSERVER OFUTKIN , GULDNER AND

SHI

Utkin, Guldner and Shi [4] propose a rotor flux and rotor
speed observer where they assume thatω is constant when
arriving at the proposed observer architecture. To begin with,
consider a copy of the induction model subsystem,

dλ̂r

dt
= −Âωλ̂r + ηLmîs

dîs

dt
= βÂωλ̂r − γîs +

1

σLs

vs,

where

Âω =

[

η npω̂
−npω̂ η

]

.

Then, Utkin, Guldner and Shi [4] propose to use as the rotor
speed estimate

ω̂e = ω0sign(sn),

where

sn =
(

îbs − ibs

)

λ̂ar −
(

îas − ias

)

λ̂br

and

d

dt

[

λ̂r

îs

]

=

[

−Âω ηLmI2

βÂω −γI2

] [

λ̂r

îs

]

+

[

O2×2
1

σLs
I2

]

us.

Utkin et al. [4, page 225] were not able to provide a proof of
the observation error convergence. However, they successfully
tested their proposed observer in a laboratory setting.

VI. T HE PROPOSEDOBSERVER

In this section we use the induction motor model (1)
to construct a fifth-order observer. The construction of the
proposed observer is inspired by the observer architectureof
Thau [7], which is also analyzed in [8], [9]. We add that the
Thau observer was generalized by Kou et al. [10] and by



Żak [11], [12]. To proceed, we represent the induction motor
model (1) in a form suitable for this observer design,












dω
dt

dλar

dt
dλbr

dt
dias

dt
dibs

dt








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

=













−D
J

0 0 0 0
0 −η 0 ηLm 0
0 0 −η 0 ηLm

0 ηβ 0 −γ 0
0 0 ηβ 0 −γ


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






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

+













0 0
0 0
0 0
1

σLs
0

0 1
σLs













[

uas

ubs

]

+













µ 0 0
0 −np 0
0 0 np

0 npβ 0
0 0 −npβ













u2(x, τL)

= Ax + B1u1 + B2u2(x, τL), (9)

where

u2(x, τL) =





λaribs − λbrias − 1
µJ
τL

ωλbr

ωλar



 .

The output equation is

y =

[

0 0 0 1 0
0 0 0 0 1

]













ω
λar

λbr

ias

ibs













= Cx. (10)

Note that the pair(A,C) is detectable but not observable. In
fact the matrixA has all its eigenvalues in the open left-half
complex plane. The designer, however, may decide to shift the
observable eigenvalues ofA into prespecified locations, that
is, the designer may want find a gain matrixL such that the
eigenvalues of the matrix(A−LC) are as close to prespecified
locations in the open left-half complex plane as possible. We
assume that the functionu2 representing the nonlinearities of
the model satisfies a Lipschitz condition with respect tox in
some neighborhood of the origin, that is, there exists a positive
constantκ such that for anyx and x̂ in a neighborhood of
the origin,

‖u2(x̂, τ̂L) − u2(x, τL)‖ ≤ κ‖x̂ − x‖, (11)

where the symbol‖ · ‖ denotes the standard Euclidean norm
for vectors and the corresponding induced norm for matrices.
The proposed observer has the form

˙̂x = (A − LC)x̂ + B1u1 + Ly + B2u2(x̂, τL) (12)

Let e(t) = x̂(t)−x(t) be the estimation error. The dynamics
of the estimation error are governed by the equation,

ė(t) = (A − LC)e(t) + B2 (u2(x̂, τ̂L) − u2(x, τL)) . (13)

Because the matrix(A − LC) is asymptotically stable, there
exists, for any symmetric positive definiteQ, a symmetric
positive definiteP such that

(A − LC)T P + P (A − LC) = −Q. (14)

We next consider the positive definite Lyapunov function
candidate,V (e) = eT Pe, for the error system (13). The time
derivative ofV evaluated along the solution of (13) is

V̇ (e) = 2eT P ė

= 2eT P (A − LC)e

+2eT PB2 (u2(x̂, τ̂L) − u2(x, τL))

≤ −eT Qe

+2‖e‖‖B2‖λmax(P )‖u2(x̂, τ̂L) − u2(x, τL)‖.

Taking into account the Lipschitz condition (11), we obtain

V̇ (e) ≤ −λmin(Q)‖e‖2 + 2κ‖B2‖λmax(P )‖e‖2

= − (λmin(Q) − 2κ‖B2‖λmax(P )) ‖e‖2.

Hence if

κ <
λmin(Q)

2‖B2‖λmax(P )
, (15)

then V̇ (e) < 0 and e = 0 is an asymptotically stable
equilibrium state of the error equation (12).

We add here that in our implementation of the proposed
observer we haveL = O. To evaluate the upper bound on
κ that appears in (15), we usedQ = I5, which resulted in
κ < 7.5348×10−5. Although this upper bound is “very small”,
the Lipschitz condition (15) is nevertheless satisfied att = 0,
that is, at the beginning of the first set of our simulations
described in Section IX, where we assume the zero initial
conditions for the motor and the observer.

In the next section we describe the induction motor drive
that we employ in testing our proposed observer.

VII. D ESCRIPTION OF THEINDUCTION MOTOR DRIVE

EMPLOYED IN SIMULATIONS AND EXPERIMENTS

The performance of the proposed observer is investigated
with computer simulations and laboratory experiments using a
4-pole, 460 V, 50 Hp, 60 Hz, delta-connected induction motor
whose specification are listed in Table III. The parameters for

TABLE III

SPECIFICATION OFBALDOR ZDM4115T-AM1 INDUCTION MOTOR.

Horsepower/Kilowatt 50/37.3
Voltage 230/460
Hertz 60
Phase 3

Full load amps 114/57
RPM 1775

Frame Size 326 TC
Rating 40C AMB-CONT

NEMA Design Code B
Full Load Efficiency 94.5

Power Factor 87.0
Enclosure TEBC

the test induction motor are given in Table IV. Substituting



TABLE IV

NUMERICAL VALUES OF THE PARAMETERS OF THE INDUCTION MOTOR.

D 0.1 N·m·sec·rad−1

J 0.4203 × 10−4 kg·m2

Lm 0.0915 H
Lr = Ls 0.0957 H

Rr 0.159Ω
Rs 0.22Ω
np 2

the above parameter values into (9) gives

A =

�
����
−0.238 0 0 0 0

0 −11.946 0 0.109 0

0 0 −11.946 0 0.109

0 1169.869 0 −42.044 0

0 0 1169.869 0 −42.044

�
���� ,

B1 =













0 0
0 0
0 0

142.454 0
0 142.454













,

and

B2 =













4.907 0 0
0 −2.000 0
0 0 0.020
0 195.861 0
0 0 −1.959













.

The associated inverter with the proposed speed estimator
incorporated into the controller architecture is shown in Fig-
ure 4. The controller determines, for a given desired torque,
the required inverter current,ie∗

dqi =
[

ie∗di ie∗qi

]T
, in the

synchronous reference frame and the required slip frequency,
ω∗

s . The controller will be described in greater detail in the
following section. Other variables that appear in Figure 4
include the measureda- andb-phase inverter currents,ĭai and
ĭbi, two measured line-to-line inverter voltages,uabi andubci,
the electrical frequencyωe (which is integrated to determine
the position of the synchronous reference frameθe), the vector
of inverter phase currenti∗abci =

[

i∗ai i∗bi i∗ci

]T
and

the vector of switch commandss∗

abc =
[

s∗a s∗b s∗c
]T

.
Setting s∗x high indicates the upper transistor ofx-phase
should be turned on (and the lower transistor off), where ‘x’
may be ‘a’, ‘ b’, or ‘ c’. The vector of stator voltages in the
stationary frame,u1, is obtained from the measured line-to-
line inverter voltages,uabi andubci, employing first theKs

s,v-
transformation followed by the wye-delta conversion, where

Ks
s,v =

2

3

[

1 −1/2

0 −
√

3/2

]

.

The SCR block designates a synchronous current regulator,
whose implementation is shown in Figure 5. This implementa-
tion comes from [13]. The currents̆iai and ĭbi are transformed
into the synchronous reference frame using the transformation

Ke
s,i =

2√
3

[

sin(θe − π/6) − cos(θe)
cos(θe − π/6) sin(θe)

]

.

The transformed currents are then used to generate the error
between the actual and the controller requestedd- and q-
axis currents. This error is multiplied by the integral gain
(

1
τscr

)

, then integrated with the integration limits±ifcl,

and added back toie∗
dqi. The modifiedd- and q-axis current

requests are transferred back to theabc variables using the
inverse transformationKe−1

s |ltc, which consists of the first
two columns of

Ke−1

s =





sin(θe) cos(θe) 1
sin(θe − 2π

3 ) cos(θe − 2π
3 ) 1

sin(θe + 2π
3 ) cos(θe + 2π

3 ) 1



 .

A delta modulator is used to generate the switching com-
mands,sabc, for switching devices of the inverterT1, . . . , T6.
EveryTsw seconds, the modulator calculates the phase current
error betweenixi∗ from the SCR and̆ixi as

exi = i∗xi − ĭxi, (16)

where ‘x’ may be ‘a’, ‘ b’, or ‘ c’. Based on the sign of error
in each phase in (16), switching commands∗x is determined
by

s∗x =

{

1 if exi > 0
0 if exi < 0.

(17)

The switching of the three phases is evenly staggered in time.
For our study,Tsw is 100µs.

VIII. D ESCRIPTION OF THECONTROL STRATEGY

In our simulations and lab experiments, we used an al-
ternative q-d induction machine model (AQDM) using the
maximum torque per amp (MTPA) control strategy recently
proposed by Kwon and Sudhoff [14], [15]. We use the MTPA
control strategy to validate the performance of the proposed
speed estimator by using the estimated speed generated by the
proposed speed estimator instead of the speed obtained from
the mechanical speed sensor. In this section, we briefly review
this AQMD based MTPA control strategy.

This control strategy was designed such that even induc-
tion machines that are driven at light or moderate loads for
significant portions of their service life would operate with
high efficiency. It is simple in structure and accounts for the
effects of magnetizing and leakage saturation. The objective
of this control strategy is to produce a desired torque with the
minimum current that is favorable in terms of inverter losses
and nearly optimal in terms of efficiency [16, Chapter 14]. In
this control strategy, the root-mean-square magnitude of the
stator currentIs and the slip frequencyωs are expressed as
functions of the desired torque,T ∗

e . Kwon and Sudhoff [14],
[15] has experimentally demonstrated that for the entire torque
range, the proposed control strategy can find a slip frequency
at which the produced torque is optimal for a given stator
current (the maximum torque per amp condition) and is
close to the desired torque. The steady-state equivalent circuit
corresponding to the AQDM that was proposed in [14], [15]
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is depicted in Figure 6. We use the following definitions:
ωs = ωe −npω andλm =

√
2
∣

∣

∣
λ̃am

∣

∣

∣
. The slipS is defined as

S =
ωe − npω

ωe

.

The parameters in this equivalent circuit are:

Lls = ls1 (which is a constant)

Llr (λm) = lr1 +
lr2

1 + lr3λm
lr4

Γm (λm) = m1 −m2λm + em3(λm−m4) + em5(λm−m6)

Yr (s) =
ya1

yτ1
s+ 1

+
ya2

yτ2
s+ 1

+
ya3

yτ3
s+ 1

,

lsL lrL

11
sr wej wej

wej
wej

S wsj( )rY

mG lm( )

lm( )

asu~

asi
~

aml
~

ari
~

Fig. 6. Steady-state equivalent circuit of AQDM.

TABLE V

RESULTANT AQDM PARAMETERS.

Lls(·) Γm(·) Yr(·)
ls1 9.06e-4 m1 6.79e0 ya1 5.65e0

Llr(·) m2 6.62e-1 yτ1 3.21e-2
lr1 1.40e-4 m3 5.03e0 ya2 4.40e-2
lr2 4.15e-3 m4 1.85e0 yτ2 4.78e-4
lr3 7.35e-1 m5 8.68e-1 ya3 3.17e-3
lr4 2.59e0 m6 1.29e-1 yτ3 8.76e-8

where s denotes the differentiation operator in the Laplace
domain. The AQDM parameters of the test induction motor
were obtained using the method proposed in [14], [17]. The
resultant motor parameters of the AQDM for this test motor
are listed in Table V. Using the AQDM parameters given
in Table V, an MTPA control strategy can now be derived.
First note that the electromagnetic torque in the synchronous



reference frame may be written as

Te =
3

2
np

(

λe
qmi

e
ds − λe

dmi
e
qs

)

. (18)

It is convenient to express (18) in terms of the slip frequency
and the rms magnitude of the applied stator current. The
relationship between thed-axis stator current in phasor rep-
resentation and thed- andq-axis currents in the synchronous
reference frame is

√
2̃ids = ieds − jieqs. (19)

Without loss of generality, we select the phase reference such
that all the current is in the d-axis and reduce (19) to

√
2Is = ieds, (20)

whereIs is the magnitude of̃ids which has only one compo-
nent. Similarly, the relationship of magnetizing flux linkages
may be expressed as

√
2λ̃dm = λe

dm − jλe
qm. (21)

After algebraic manipulations of (18) and (21), we rewrite
the electromagnetic torque in terms of the stator current and
magnetizing flux linkage phasors as

Te = 3np=
(

λ̃dmIs

)

, (22)

where=(·) denotes the operation of taking the imaginary part
of the expression in the parentheses and the bar indicates the
operation of complex conjugation. Using the AQDM steady-
state equivalent circuit of Figure 6, we expressλ̃dm as

λ̃dm (ωs, Is) =
Zag (λm, ωs)

jωe

Is, (23)

where

Zag (λm, ωs) =
ωe

−jΓm (λm) + ωs

jωsLlr(λm)+ 1
Yr(jωs)

(24)

and the subscript ’ag’ in Zag indicates the impedance looking
into the air-gap of the induction machine. The electromagnetic
torque can now be expressed in terms of onlyωs and Is.
Substituting (23) into (22) yields

Te (ωs, Is) = 3np=
(

(

Zag (λm, ωs)

jωe

Is

)

Is

)

. (25)

Note that theωe appearing inZag in (24) cancels out theωe in
the denominator of (25), and soTe (ωs, Is) is independent of
ωe. Next, we note thatλm = λm (ωs, Is) that appears in (25)

satisfies the conditionλm =
√

2
∣

∣

∣
λ̃dm

∣

∣

∣
and can be calculated

by solving the nonlinear algebraic equation

|ωeλm| =
√

2 |IsZag (λm, ωs)| (26)

using, for example, the Newton-Raphson method for a given
ωs and Is. We can now present a procedure for constructing
an MTPA control strategy using (25). First, a set of stator
current commands forIs is be selected from nearly 0 A to
somewhat over the rated current. Thek-th point is denoted

Is,k. The optimum slip frequency for each current is iden-
tified by numerically maximizing (25) withIs = Is,k. The
resulting value of the slip frequency is denotedωs,k and the
corresponding value of the torque is denotedTe,k. These data
points are shown in Figure 7. Next, these data points are used
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Fig. 7. MTPA control law based on AQDM.

to construct a stator current and slip frequency control law. The
data points{Is,k, Te,k} are used to formulate a stator current
control law of the form

I∗s = a1T
∗

e + a2T
∗b1
e + a3T

∗b2
e , (27)

where a1, a2, a3, b1, and b2 are selected by maximizing the
objective fitness function defined by

fMTPA =
1

ε+

√

1
NK

∑NK

k=1

∣

∣

∣
Is,k − I∗s,k

∣

∣

∣

, (28)
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Fig. 8. Summary of a performance study of the proposed observer for zero
initial conditions for the observer and the motor model.

where ε is a small number
(

10−3
)

that is added to the
denominator in order to prevent singularities in the unlikely
event of a perfect fit,NK is the size of a set of stator current
commands, andI∗s,k is given by (27) withT ∗

e = Te,k.
Similarly, the data points{ωs,k, Te,k} are used to formulate

a slip frequency control law of the form

ω∗

s = c0 + c1T
∗

e + c2T
∗2
e + c3T

∗3
e + c4T

∗4
e , (29)

wherec0, c1, c2, c3, andc4 are also chosen by maximizing (28)
with Is replaced withωs. We obtainω∗

s,k from (29) with
T ∗

e = Te,k. Together, (27) and (29) form the MTPA control
strategy. Applying the above procedure to the test induction
motor whose AQDM parameters are given in Table V, the
formulas given by (27) and (29) become

I∗s (T ∗

e ) = 0.109T ∗

e − 17.0T ∗0.0177
e + 18.5T ∗0.0799

e (30)

and

ω∗

s (T ∗

e ) = 1.4 − 2.4 × 10−3T ∗

e + 176 × 10−6T ∗2
e

−933 × 10−9T ∗3
e + 1.74 × 10−9T ∗4

e . (31)

The final analytically obtained values of the resulting MTPA
control law based on the AQDM are also depicted in Figure 7.

IX. SIMULATION STUDIES

We performed computer simulations of the induction motor
drive using the Advanced Continuous Simulation Language
(ACSL) [18]. We note that the variables related to the MTPA
control strategy were transformed into the synchronous refer-
ence frame while the variables used in the proposed estimator
were transformed into the stationary reference frame. The first
simulation study focused on the performance of the proposed
speed estimator in an application where the characteristicof
the load torque is known to have a form where the load torque
is proportional to the mechanical rotor speed. In the study,the
desired torque to the MTPA control strategy is set at 150 Nm
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Fig. 9. Summary of a performance study of the proposed estimator for
different initial conditions for the motor and the observer.

and the estimated load torque employed by the proposed ob-
server is proportional to the estimated rotor speed. Both initial
conditions of the plant and the proposed estimator are set to
zero. The results of this study are summarized in Figure 8. As
can be seen in the figure, the proposed estimator predicts the
rotor speed with good accuracy during the transient period as
well as in the steady state period. Approximately 10% speed
error is observed one second into the simulation, which then
decreases. There is also some deviation in the stator current.
This needs to be further investigated in future research.

The objective of the second study was the performance of
the proposed estimator in an application where the charac-
teristic of the load torque is unknown. We assumed that the
transient response of the induction motor was short enough so
that the load torque was equal to the the estimated electromag-
netic torque. This enabled us to make use of the same equation
as the estimated electromagnetic torque using the measured
stator currents. Note that the measured stator currents are
present inτ̂L. In the experiment the test induction motor was
driven to 900 rpm by the dynamometer and controlled in
the torque mode with the desired torque of 150 Nm by the
MTPA control strategy. The results of this simulation study
are collected Figure 9, which shows that even though there are
big deviations in the transient periods due to different initial
conditions, the proposed estimator starts to track the actual
speed closely in under 2 seconds.

X. EXPERIMENTAL STUDIES

In order to see if the results of computer simulations,
described in the previous section, would predict the func-
tioning of the proposed observer in real applications, its per-
formance was investigated in a laboratory experiment, where
the estimated load torque is unknown. The estimated load
torque used by the proposed observer was obtained using
the electromagnetic torque equation employing the measured
stator currents. Therein, the test induction motor was driven
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Fig. 10. Plots of the motor and the observer state variables inthe steady
state in an experimental performance study of the proposed observer.

to 900 rpm with the torque command of 150 Nm using the
MTPA control strategy. The results are shown in Figure 10.
The experiment shows that the measured and estimated speeds
are in good agreement during the steady-state period. The
maximum speed estimation error is around 2.5%. We conclude
that the proposed observer works well using stator voltagesand
measured stator currents in the estimated load torque in the
steady state, that is, when the electromagnetic and load torques
are equal. The second study was performed to investigate
the tracking capability of the proposed estimator during the
transient period with the same conditions as in the first
experiment except that the rotor speed was varied arbitrarily in
the range of 500 rpm to 900 rpm. As can be seen in Figure 11,
the estimated speed follows the measured speed very closely
during the steady state response, and even during the transient
response. However, there are some deviations of the estimated
stator currents from the measured currents. Further study is
required to improve the proposed observer architecture in
order to reduce the estimation error. Next, the applicationof
the proposed estimator to speed sensorless induction machine
drive was considered. We incorporated the proposed estimator
into the MTPA control strategy based induction machine
drive as shown in Figure 4, where we replaced the actual
rotor speed,ω, by its estimated value,̂ω, produced by the
proposed estimator. This laboratory experiment was conducted
with the test induction motor driven at a speed of 900 rpm
at a desired torque of 150 Nm. The electromagnetic torque
measured at the estimated optimal slip frequency command
ω∗

s defined in (31) was compared with the two sets of torque
measurements taken at 0.9 and 1.1 times the slip frequency
commandω∗

s in (31). These results are compared with the
results of the MTPA control strategy based induction machine
drive that uses the measured rotor speed and are shown in
Figure 12. In both cases, the torque measured at the estimated
optimal slip frequency commandω∗

s in (31) is larger than the
torque produced at any other slip frequency indicating that
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Fig. 11. Performance study of the proposed observer when rotor speed varies
from 500 rpm to 900 rpm.
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Fig. 12. Performance comparison study of the MTPA control strategy when
the rotor speed is estimated by the proposed observer incorporated into the
controller and when the rotor speed is measured by an encoder.

the estimated speed is accurate enough to substitute for the
mechanical rotor speed sensor in this application. Note that the
performance of the MTPA control strategy with the proposed
estimator incorporated into the controller turns out to be poor
because the speed estimation error is relatively large compared
with the slip frequency command despite that the error is less
than 1% at very light loads. Further studies on improving the
observer performance at light loads is desired.

XI. CONCLUSIONS

In this paper, we investigated the use of observers in the
sensorless control of induction motor drives. The three recently
proposed rotor flux and speed observers [1], [3], [4] employed
the fourth-order induction motor model assuming constant
rotor speed and utilizing the measured stator currents. These
observers perform well in the steady state or when the speed
does not change aggressively. In the papers mentioned above,
the performance of the proposed observers when the rotor



speed changes aggressively was not investigated. This aspect
motivated us to employ the fifth-order induction motor model
to propose an alternative rotor flux and speed observer. Simu-
lation and laboratory experimental studies demonstrate that the
proposed rotor flux and speed observer could do an excellent
job in predicting the speed during the transient and steady
state periods, even when applied in the sensorless control of
the induction motor drives. However, further analysis should
be performed to investigate the deviations of the estimated
stator current from measured current when rotor speed changes
aggressively, for example, from 500 rpm to 900 rpm.
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